LAPONITE® nanorods regulating degradability,acidic-alkaline microenvironment,apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds |
| |
Authors: | Liangchen Tang Wu Wei Xuehong Wang Jun Qian Jianyou Li Axiang He Lili Yang Xuesheng Jiang Xiongfeng Li Jie Wei |
| |
Affiliation: | Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 China, +86-021-64252745 ; College of Materials Science & Engineering, Nanjing Tech University, Nanjing 210009 China.; Huzhou Center Hospital, Department Orthopedic, 198 Hongqi Rd, Huzhou 313000 China ; Second Mil. Med. Univ., Changzheng Hosp., Dep. Orthopaed Surg., Shanghai 200003 China |
| |
Abstract: | Novel bio-nanocomposite scaffolds for bone tissue engineering were prepared by incorporation of LAPONITE® (LAP) nanorods into poly(butylene succinate) (PBSu). The results showed that the scaffolds had well interconnected macroporous structures with macropore size in the range of 200–400 μm and porosity of around 70%. In addition, the water absorption, degradability and apatite mineralization ability of the scaffolds were clearly enhanced with the increase of LAP content. Moreover, the degradation of LAP produced alkaline products, which neutralized the acidic degradable products of PBSu, and formed a weak alkaline microenvironment similar to a biological environment. Furthermore, the adhesion, proliferation and differentiation of MC3T3-E1 cells onto the scaffolds were significantly promoted with the increase of LAP content, in which the scaffold with 30 wt% LAP (sPL30) exhibited the best stimulation effect on the cells responses. The results suggested that the promotion of cells responses could be ascribed to the improvements of surface characteristics (including roughness, hydrophilicity, ions release and apatite formation, etc.) of the scaffolds. The sPL30 scaffold with excellent biocompatibility, bioactivity and degradability had great potential for applications in bone tissue engineering.PBSu/LAP bio-nanocomposite scaffolds were prepared, and the sPL30 scaffolds significantly stimulated cell adhesion and proliferation. |
| |
Keywords: | |
|
|