首页 | 本学科首页   官方微博 | 高级检索  
检索        


A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O2 batteries
Authors:Shuo Liu  Chengdong Wang  Shanmu Dong  Hongbin Hou  Ben Wang  Xiaogang Wang  Xiao Chen  Guanglei Cui
Institution:Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101 Qingdao PR China.; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China
Abstract:Lithium–oxygen (Li–O2) batteries as promising energy storage devices possess high gravimetric energy density and low emission. However, poor reversibility of electrochemical reactions at the cathode significantly affects the electrochemical properties of nonaqueous Li–O2 batteries, and low charge–discharge efficiency also results in short cycle-life. In this work, functional air cathodes containing mesoporous tungsten carbide nanoparticles for improving the reversibility of positive reactions in Li–O2 cells are designed. Mesoporous tungsten carbides are synthesized with mesoporous carbon nitride as the reactive template and carbon source. And mesoporous tungsten carbides in cathode materials display better electrochemical performance in Li–O2 cells in comparison with mesoporous carbon nitride and hard carbon. Tungsten carbide-1 (WC-1) with larger specific surface area promotes reversible formation and decomposition of Li2O2 at the cathode and lower charge overpotential (about 0.93 V) at 100 mA g−1, which allows the Li–O2 cell to run up to 100 cycles. In addition, synergistic interaction between WC-1 and LiI could further decrease the charging overpotentials of Li–O2 cells and improve the charge–discharge performances of the Li–O2 cells. These results indicate that mesoporous electrocatalysts can be utilized as promising functional materials for Li–O2 cells to decrease overpotentials.

Tungsten carbide with large specific surface area catalyzes reversible formation/decomposition of Li2O2 with low overpotential in a Li–O2 cell.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号