首页 | 本学科首页   官方微博 | 高级检索  
检索        


Sodium borohydride-nickel chloride hexahydrate in EtOH/PEG-400 as an efficient and recyclable catalytic system for the reduction of alkenes
Authors:Kaoxue Li  Chuanchao Liu  Kang Wang  Yang Ren  Fahui Li
Institution:Chemistry & Chemical and Environmental Engineering College, Weifang University, Weifang 261061 China, +86-536-8785283
Abstract:An efficient, safe and one-pot convenient catalytic system has been developed for the reduction of alkenes using NaBH4–NiCl2·6H2O in EtOH/PEG-400 under mild conditions. In this catalytic system, a variety of alkenes (including trisubstituted alkene α-pinene) were well reduced and the Ni catalyst could be recycled.

An efficient, safe and one-pot convenient catalytic system has been developed for the reduction of alkenes using NaBH4–NiCl2·6H2O in EtOH/PEG-400 under mild conditions.

The reduction of alkenes is an important transformation in organic synthesis, widely used particularly in petrochemical, pharmaceutical, and fine chemical processes. Traditionally, direct hydrogenation,1–4 catalytic hydrogen transfer 5–7and hydride reduction methods8–10 have been employed for the reduction of alkenes. Among the reported methods, the utility of sodium borohydride for the reduction of simple alkenes first described by Brown in 1962 is well known.11 In recent years, several related catalytic systems on modification of Brown''s approach have been developed. These catalytic systems include NaBH4/NiCl2·6H2O/moist alumina in hexane,12 InCl3–NaBH4 reagent system,13 NaBH4/RuCl3 under aqueous conditions,14 NaBH4/CH3COOH in the presence of Pd/C15 and NaBH4-RANEY® nickel system in water.16 Nevertheless, most of these systems require costly transition metal catalyst, long reaction time and a large excess of NaBH4. In addition to this, little has been done to recycle the catalyst for the reduction of alkenes using NaBH4. Thus, a very simple, efficient and recyclable system for the reduction of alkenes by NaBH4 would be highly desirable.In the reduction of alkenes by NaBH4, the in situ generated metal nanoparticles (NPs) from the combination of appropriate metal salts and NaBH4 catalyze the reduction of alkene.15 In general, metal NPs tend to agglomerate during the catalytic processes and therefore need to be protected by stabilizers.17 Castro et al. ever noticed the aggregation of NPs after just one time in the reduction of alkenes by NaBH4 without use of a stabilizer.18 Immobilized nanoparticles (NPs) on insoluble solid supports were generally used for this process in the past literature.12,15,16 One significant example was that Takashi Morimoto and coworkers reached 90% yield of ethylbenzene within 3 h using NiCl2·6H2O on moist alumina reducted by NaBH4 in hexane at 30 °C.12 Unfortunately, heterogeneous catalysts of NPS on solid supports are often more inert than corresponding soluble NPs catalysts.19 In view of the above, we wanted to explore the use of soluble NPs generated in situ for this process. PEG-400 is known to be an excellent dispersion agent and stabilizer for soluble metal NPs.20,21 Abdul Rahman Mohamed et al. found that iron metal NPs formed in an ethanol-PEG-400 solution displayed a more uniform distribution.22 In this work, we introduce NaBH4/NiCl2·6H2O in EtOH/PEG-400 to the reduction of alkenes, to the best of our knowledge, the system is novel for the reaction. The novel system was expected to show the following advantages (Scheme 1): (a) NaBH4 not only reduces Ni2+ to soluble Ni (0) NPs in situ, but also serves as hydrogen donation for the reduction of alkenes with ethanol; (b) the in situ generated soluble Ni (0) NPs catalyst stabilized by PEG-400 is stable, efficient and recyclable for the reduction of alkenes.Open in a separate windowScheme 1Reduction of alkenes using NaBH4–NiCl2·6H2O in EtOH/PEG-400 system.We first chose the reduction of styrene as model reaction (12,15,23,24 This is possibly because the hydrogen source for the reduction can be sufficiently derived from the B–H of NaBH4 and the O–H of ethanol in our catalytic system (ideally 1 molar of NaBH4 can reduce 4 molar of alkenes with ethanol), as recently reported by Bai et al. for the semihydrogenation of alkynes with NaBH4 in methanol.25 The activity of the in situ generated Ni (0) NPs catalyst in EtOH/PEG-400 (3/2 ratio) had also been compared with the commercial RANEY® nickel catalyst. The results revealed that the in situ generated Ni (0) NPs exhibited a higher activity for the reduction of styrene (entries 4, 20). Thus, we can conclude that the EtOH/PEG-400 using NiCl2·6H2O–NaBH4 is a very simple and efficient system for the reduction of styrene.Optimization of reaction conditions for the reduction of styrenea
EntrySolvent (v/v)NaBH4 (equiv.)Yieldb (%)
1EtOH0.576
2PEG-4000.541
3EtOH-PEG400(4/1)0.584
4EtOH-PEG400(3/2)0.599
5EtOH-PEG400(2/3)0.592
6EtOH-PEG400(1/4)0.579
7MeOH-PEG400(3/2)0.598
81-Propanol-PEG400(3/2)0.580
91-Butanol-PEG400(3/2)0.560
102-Propanol-PEG400(3/2)0.518
11H2O-PEG400(3/2)0.526
12Ethyl acetate-PEG400(3/2)0.523
13Toluene-PEG400(3/2)0.521
14Cyclohexane-PEG400(3/2)0.526
15HCOOH-PEG400(3/2)0.5<1
16CH3COOH-PEG400(3/2)0.5<1
17EtOH-PEG400(3/2)0.7589
18EtOH-PEG400(3/2)1.079
19EtOH-PEG400(3/2)1.2568
20EtOH-PEG400(3/2)0.554c
Open in a separate windowaReaction conditions: N2 atmosphere, 30 °C, NiCl2·6H2O 0.25 mmol, solvent (5 mL), styrene 5 mmol.bGC yield.cCatalyzed by RANEY® nickel.The in situ generated Ni (0) NPs in EtOH/PEG-400 were characterized by UV-vis, XPS after model reaction. Fig. 1a showed the UV-vis spectrum of nickel chloride hexahydrate in EtOH/PEG-400 before and after reaction. Apparently, a broad band at 250–270 nm appeared after reaction, which indicated the formation of Ni (0) NPs.26 XPS spectra (Fig. 1b) showed that Ni 2p3/2 peak at approximately 852.8 eV and Ni 2p1/2 peak at 870.9 eV, respectively, indicating the generation of Ni (0) NPs.27Open in a separate windowFig. 1(a) UV-vis spectra of the solution of NiCl2·6H2O in EtOH/PEG-400 before and after the reduction of styrene using NaBH4. (b) XPS of in situ generated Ni NPs.The motive to use PEG-400 as a stabilizer in ethanol was the possibility to protect and recycle the Ni (0) NPs catalyst. After model reaction, the catalyst could be separated by simple extracting with n-heptane followed by decantation and reused directly without further purification. The results for the reuse of the Ni catalyst were shown in 28,29 However, prolonging the reaction time from 15 min to 120 min could still keep a high yield of ethylbenzene. Notably, the activities of Ni (0) NPs from second run still higher than the corresponding heterogeneous Ni NPS on moist alumina reported by Takashi Morimoto et al.12Recycle of the catalysta
RunTime/minYieldb (%)
11599
212099
312097
Open in a separate windowaReaction conditions: N2 atmosphere, 30 °C, NiCl2·6H2O 0.25 mmol, VEtOH/VPEG-400 = 3 : 2 (5 mL), styrene 5 mmol, NaBH4 2.5 mmol.bGC yield.To explore the reason why the catalytic activity decreased after first run, the leaching, size and distribution of Ni NPs were characterized after reaction. The leached Ni species were checked by ICP-AES and found to be only 0.3%. HRTEM image showed that Ni (0) NPs were well-dispersed with an average diameter of 3–5 nm (Fig. 2), indicating the good dispersion and stabilization of the Ni (0) NPs in EtOH/PEG-400 system. Therefore, the reason for the decrease of catalyst could hardly be explained by Ni leaching or the aggregate of the Ni (0) NPs.Open in a separate windowFig. 2HRTEM image of in situ generated Ni NPs after model reaction.Meanwhile, control experiments were performed between in situ generated Ni (0) NPs in the second run and preformed Ni (0) NPs catalyst (see the ESI for details)for the reduction of styrene (Fig. 3). Obviously, the activities of the two kinds of Ni (0) NPs catalysts for the model reaction were almost equivalent. This promoted us to infer Ni (0) NPs had been changed from in situ generated to preformed catalyst, which may be the main reason for the reduced activity of the catalyst in subsequent runs during recycling. The details are under investigation.Open in a separate windowFig. 3Control experiments between in situ generated Ni (0) NPs in the second run and preformed Ni (0) NPs catalyst for the model reaction.The scope of this catalytic system was also examined for the reduction of various olefins (ref. 30) and NaBH4/RuCl3 system,14,31 which were inert for the reduction of α-pinene) was also reduced without any difficulty (entry 14).Reduction of alkenes with NaBH4/NiCl2·6H2O in EtOH/PEG-400 systema
EntrySubstrateTime (min)Yieldb (%)
11-Hexene1598
21-Octene1596
31-Decene1595
41-Dodecene1594
5Styrene1599
64-Methylstyrene15100
7Allyl phenyl ether15100
8 trans-Anethole12094
9β-Pinene24096
10Norbornene15100
11Cyclopentene3096
12Cyclohexene12099
131,5-Cyclooctadiene30094(72 : 28)c
14α-Pinene30091
Open in a separate windowaReaction conditions: N2 atmosphere, 30 °C, NiCl2·6H2O 0.25 mmol, VEtOH/VPEG-400 = 3 : 2 (5 mL), alkenes 5 mmol, NaBH4 2.5 mmol.bGC yield.cRatio of cyclooctene/cyclooctane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号