首页 | 本学科首页   官方微博 | 高级检索  
检索        


Photo-responsive polymeric micelles and prodrugs: synthesis and characterization
Authors:Shiu-Wei Wang  Yin-Ku Lin  Jia-You Fang  Ren-Shen Lee
Institution:Division of Natural Science, Center of General Education, Chang Gung University, 259 Wen-Hwa 1st Road, Guishan Dist., Tao-Yuan 33302 Taiwan.; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung Taiwan ; Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan Taiwan
Abstract:Bio-recognizable and photocleavable amphiphilic glycopolymers and prodrugs containing photodegradable linkers (i.e. 5-hydroxy-2-nitrobenzyl alcohol) as junction points between bio-recognizable hydrophilic glucose (or maltose) and hydrophobic poly(α-azo-ε-caprolactone)-grafted alkyne or drug chains were synthesized by combining ring-opening polymerization, nucleophilic substitution, and “click” post-functionalization with alkynyl-pyrene and 2-nitrobenzyl-functionalized indomethacin (IMC). The block-grafted glycocopolymers could self-assemble into spherical photoresponsive micelles with hydrodynamic sizes of <200 nm. Fluorescence emission measurements indicated the release of Nile red, a hydrophobic dye, encapsulated by the Glyco-ONB-P(αN3CL-g-alkyne)n micelles, in response to irradiation caused by micelle disruption. Light-triggered bursts were observed for IMC-loaded or -conjugated micelles during the first 5 h. Following light irradiation, the drug release rate of IMC-conjugated micelles was faster than that of IMC-loaded micelles. Selective lectin binding experiments confirmed that glycosylated Glyco-ONB-P(αN3CL-g-alkyne)n could be used in bio-recognition applications. The nano-prodrug with and without UV irradiation was associated with negligible levels of toxicity at concentrations of less than 30 μg mL−1. The confocal microscopy and flow cytometry results indicated that the uptake of doxorubicin (DOX)-loaded micelles with UV irradiation by HeLa cells was faster than without UV irradiation. The DOX-loaded Gluco-ONB-P(αN3CL-g-PONBIMC)10 micelles effectively inhibited HeLa cells'' proliferation with a half-maximal inhibitory concentration of 8.8 μg mL−1.

Bio-recognizable and photocleavable amphiphilic glycopolymers and prodrugs containing photodegradable linkers as junction points between hydrophilic glycose and hydrophobic poly(α-azo-ε-caprolactone)-grafted alkyne or drug chains were synthesized.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号