首页 | 本学科首页   官方微博 | 高级检索  
检索        


Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects
Authors:Goldbaum Michael H  Sample Pamela A  Zhang Zuohua  Chan Kwokleung  Hao Jiucang  Lee Te-Won  Boden Catherine  Bowd Christopher  Bourne Rupert  Zangwill Linda  Sejnowski Terrence  Spinak David  Weinreb Robert N
Institution:Ophthalmic Informatics Laboratory and Hamilton Glaucoma Center, Department of Ophthalmology, University of California at San Diego, La Jolla, 92093, USA. mgoldbaum@ucsd.edu
Abstract:PURPOSE: Clustering by unsupervised learning with machine learning classifiers was shown to segment clusters of patterns in standard automated perimetry (SAP) for glaucoma in previous publications. In this study, unsupervised learning by independent component analysis decomposed SAP field patterns into axes, and the information represented by these axes was evaluated. METHODS: SAP fields were used that were obtained with the Humphrey Visual Field Analyzer (Carl Zeiss Meditec, Dublin, CA) from 189 normal eyes and 156 eyes with glaucomatous optic neuropathy (GON) determined by masked review with stereoscopic optic disc photographs. The variational Bayesian independent component analysis mixture model (vB-ICA-mm) partitioned the SAP fields into the most informative number of clusters. Simultaneously, the model learned an optimal number of maximally independent axes for each cluster. RESULTS: The most informative number of clusters in the SAP set was two. vB-ICA-mm placed 68.6% of the eyes with GON in a cluster labeled G and 98.4% of the eyes with normal optic discs in a cluster labeled N. Cluster G optimally contained six axes. Post hoc analysis of patterns generated at -1 SD and +2 SD from the cluster G mean on the six axes revealed defects similar to those identified by experts as indicative of glaucoma. SAP fields associated with an axis showed increasing severity, as they were located farther in the positive direction from the cluster G mean. CONCLUSIONS: vB-ICA-mm represented the SAP fields with patterns that were meaningful for glaucoma experts. This process also captured severity in the patterns uncovered. These findings should validate vB-ICA-mm as a data-mining technique for new and unfamiliar complex tests.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号