Contribution of amygdalar and lateral hypothalamic neurons to visual information processing of food and nonfood in monkey |
| |
Authors: | T Ono R Tamura H Nishijo K Nakamura E Tabuchi |
| |
Affiliation: | Department of Physiology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan. |
| |
Abstract: | Visual information processing was investigated in the inferotemporal cortical (ITCx)-amygdalar (AM)-lateral hypothalamic (LHA) axis which contributes to food-nonfood discrimination. Neuronal activity was recorded from monkey AM and LHA during discrimination of sensory stimuli including sight of food or nonfood. The task had four phases: control, visual, bar press, and ingestion. Of 710 AM neurons tested, 220 (31.0%) responded during visual phase: 48 to only visual stimulation, 13 (1.9%) to visual plus oral sensory stimulation, 142 (20.0%) to multimodal stimulation and 17 (2.4%) to one affectively significant item. Of 669 LHA neurons tested, 106 (15.8%) responded in the visual phase. Of 80 visual-related neurons tested systematically, 33 (41.2%) responded selectively to the sight of any object predicting the availability of reward, and 47 (58.8%) responded nondifferentially to both food and nonfood. Many of AM neuron responses were graded according to the degree of affective significance of sensory stimuli (sensory-affective association), but responses of LHA food responsive neurons did not depend on the kind of reward indicated by the sensory stimuli (stimulus-reinforcement association). Some AM and LHA food responses were modulated by extinction or reversal. Dynamic information processing in ITCx-AM-LHA axis was investigated by reversible deficits of bilateral ITCx or AM by cooling. ITCx cooling suppressed discrimination by vision responding AM neurons (8/17). AM cooling suppressed LHA responses to food (9/22). We suggest deep AM-LHA involvement in food-nonfood discrimination based on AM sensory-affective association and LHA stimulus-reinforcement association. |
| |
Keywords: | |
|
|