首页 | 本学科首页   官方微博 | 高级检索  
     


Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen.
Authors:T L Ripmaster   K Shiba     P Schimmel
Affiliation:Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
Abstract:Because of variations in tRNA sequences in evolution, tRNA synthetases either do not acylate their cognate tRNAs from other organisms or execute misacylations which can be deleterious in vivo. We report here the cloning and primary sequence of a 958-aa Saccharomyces cerevisiae alanyl-tRNA synthetase. The enzyme is a close homologue of the human and Escherichia coli enzymes, particularly in the region of the primary structure needed for aminoacylation of RNA duplex substrates based on alanine tRNA acceptor stems with a G3.U70 base pair. An ala1 disrupted allele demonstrated that the gene is essential and that, therefore, ALA1 encodes an enzyme required for cytoplasmic protein synthesis. Growth of cells harboring the ala1 disrupted allele was restored by a cDNA clone encoding human alanyl-tRNA synthetase, which is a serum antigen for many polymyositis-afflicted individuals. The human enzyme in extracts from rescued yeast was detected with autoimmune antibodies from a polymyositis patient. We conclude that, in spite of substantial differences between human and yeast tRNA sequences in evolution, strong conservation of the G3.U70 system of recognition is sufficient to yield accurate aminoacylation in vivo across wide species distances.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号