首页 | 本学科首页   官方微博 | 高级检索  
     


Intracellular Ca2+ and delay of ischemia-induced electrical uncoupling in preconditioned rabbit ventricular myocardium
Authors:Dekker L R  Coronel R  VanBavel E  Spaan J A  Opthof T
Affiliation:Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands. L.R.Dekker@AMC.UVA.NL
Abstract:OBJECTIVE: Short periods of ischemia and reperfusion alter myocardial Ca2+ handling and temporarily induce a mild increase of [Ca2+]i. We hypothesized that these alterations are involved in the cardioprotective mechanism of ischemic preconditioning, possibly via a Ca(2+)-dependent activation of protein kinase C (PKC). METHODS AND RESULTS: In arterially perfused rabbit papillary muscles, we determined Ca2+ transients (indo 1) and indicators of the onset of irreversible ischemic damage, including [Ca2+]i rise, electrical uncoupling and contracture. We tested three protocols of ischemic preconditioning (1-3). In addition, the effects of infusion of staurosporine, a blocker of PKC (4), or glibenclamide, a blocker of K+ATP channels (5) were analyzed. Furthermore, pretreatment with phorbol 12-myrisate 13-acetate (PMA), an activator of PKC (6), or cyclopiazonic acid (CPA), an inhibitor of the SR Ca2+ pump (7) was tested. During periods of reperfusion in the preconditioning protocols, the duration of the Ca2+ transient and the diastolic Ca2+ level temporarily increased. Only if sustained ischemia was induced during these changes of the transients, cardioprotection was present. Similar alterations of the Ca2+ transient concurring with cardioprotection were induced by pretreatment with PMA as well as CPA. Staurosporine and glibenclamide antagonized the reperfusion-induced changes of the Ca2+ transients as well as cardioprotection. If reperfusion was extended until the Ca2+ transient had normalized, cardioprotection was also absent. Under all conditions tested, the diastolic Ca2+ elevation or the Ca2+ transient prolongation prior to sustained ischemia correlated with the postponement of ischemic injury. CONCLUSIONS: A pre-ischemic mild increase of [Ca2-]i presents a common effector of preconditioning. Our data suggest that activation of PKC or opening of K+ATP channels may initiate the pathway leading to an alteration of Ca2+ metabolism and a protected status of the myocardium.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号