首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and anticonvulsant activity of enaminones. Part 7. Synthesis and anticonvulsant evaluation of ethyl 4-[(substituted phenyl)amino]-6-methyl-2-oxocyclohex-3-ene-1-carboxylates and their corresponding 5-methylcyclohex-2-enone derivatives
Authors:Eddington Natalie D  Cox Donna S  Khurana Manoj  Salama Noha N  Stables James P  Harrison Sylvia J  Negussie Abraham  Taylor Robert S  Tran Uy Q  Moore Jacqueline A  Barrow Judith C  Scott K R
Affiliation:Department of Pharmaceutical Sciences, Pharmacokinetics Biopharmaceutics Laboratory, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD 21201-4403, USA.
Abstract:Further investigation of the potential anticonvulsant activity of the enaminones was attempted to discern the possible role of metabolites as the active/co-active entities of the esters of the enaminones. A series of 5-methyl-2-cyclohexene enaminones, the hypothesised metabolites corresponding to a sequence of active and inactive esters were synthesised and evaluated for anticonvulsant activity. With two exceptions, ethyl 4-[(4-cyanophenyl)amino]-6-methyl-2-oxocyclohex-3-ene-1-carboxylate (1k), and 3-[N-(4-cyanophenyl)amino]-5-methyl-2-cyclohexenone (3g), and ethyl 4-(phenylamino)-6-methyl-2-cyclohexenone (1n), and 3-N-(phenylamino)-5-methyl-2-cyclohexenone (3j), anticonvulsant screening data were parallel, with the ester and their putative decarboxylated analogue displaying similar activity. The most active analogue evaluated in this series, ethyl 4-[(4-chlorophenyl)amino]-6-methyl-2-oxocyclohex-3-ene-1-carboxylate (1e), which displayed an ED(50) of 16.7 mg kg(-1) and a TD(50) of 110.7 mg kg(-1) (protective index, PI = TD(50)/ED(50) = 6.6) in the maximal electroshock seizure (MES) test in mice and an ED(50) of 3.0 mg kg(-1) and a TD(50) >250 mg kg(-1) (PI > 83.3) in rats in the same evaluation, making this compound the most potent enaminone emanating from our laboratories. Pharmacokinetic evaluation of compound 1e in rats using LC/MS analysis unequivocally provides evidence that this compound is converted into the decarboxylated analogue 3a in the brain and the urine.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号