首页 | 本学科首页   官方微博 | 高级检索  
检索        


Evidence forN-methyl-d-aspartic acid receptor-mediated modulation of the commissural input to central vestibular neurons of the frog
Authors:T Kno pfel
Institution:T. Kno¨pfel,
Abstract:We have investigated the role ofN-methyl-d-asparte (NMDA) receptors in the excitatory synaptic transmission to central vestibular neurons in the isolated superfused brainstem of the frog. In superfusate containing 1 mM Mg2+ field potentials in the vestibular nuclei evoked by electrical stimulation of either the ipsi- or the contralateral VIIIth nerve were not affected by bath-appliedd-2-amino-5-phosphonovaleric acid (D-APV, 25–50 μM), a selective NMDA antagonist. In a low Mg2+ solution postsynaptic field potential components were larger than control but still unaffected by D-APV. Ipsi- and contralaterally evoked excitatory postsynaptic potentials (EPSPs) differed in their shape parameters as well as their pharmacological sensitivity. Ipsilaterally evoked EPSPs were not affected by D-APV and had a rise time that was faster than that of contralaterally evoked EPSPs. The peak amplitude of the latter was reduced by D-APV (25–50 μM) to about 65% of the control value in the presence of 1 mM Mg2+. During bath application of NMDA (100 μM) an increased input resistance and repetitive de- and hyperpolarizing membrane potential shifts were observed. Similar events were observed during a reduction of the Mg2+ concentration. Bath application of NMDA (0.1–1 μM) resulted in an enhanced size of the recorded EPSPs. Dendritic and somatic EPSPs were stimulated on a computer with the assumption of a constant NMDA receptor activation and a pulse-like non-NMDA receptor activation. The results of these stimulations are consistent with the hypothesis that the efficacy of non-NMDA-mediated vestibular commissural synaptic transmission is modulated through tonically activated NMDA receptors.
Keywords:Vestibular nucleus  N-Methyl-d-aspartate  Acidic amino acid receptor  Dendritic cable property  Modulator  In vitro
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号