首页 | 本学科首页   官方微博 | 高级检索  
检索        


Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies
Authors:Alemu Yared  Bluestein Danny
Institution:Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY11794-8181, USA.
Abstract:A model for platelet activation based on the theory of damage, incorporating cumulative effects of stress history and past damage (senescence) was applied to a three-dimensional (3-D) model of blood flow through a St. Jude Medical (SJM) bileaflet mechanical heart valve (MHV), simulating flow conditions after implantation. The calculations used unsteady Reynolds-averaged Navier-Stokes formulation with non-Newtonian blood properties. The results were used to predict platelet damage from total stress (shear, turbulent, deformation), and incorporate the contribution of repeated passages of the platelets along pertinent trajectories. Trajectories that exposed the platelets to elevated levels of stress around the MHV leaflets and led them to entrapment within the complex 3-D vortical structures in the wake of the valve significantly enhanced platelet activation. This damage accumulation model can be used to quantify the thrombogenic potential of implantable cardiovascular devices, and indicate the problem areas of the device for improving their designs.
Keywords:Mechanical heart valve  Platelets  Damage  Activation  Blood flow  Numerical methods  Computational fluid dynamics  Thromboembolism
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号