首页 | 本学科首页   官方微博 | 高级检索  
检索        


Innovative Cancer Vaccine Strategies Based on the Identification of Tumour-Associated Antigens
Authors:Han Ying  Gang Zeng  Keith L Black
Institution:1. Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8631 West Third St., Suite 800E, Los Angeles, CA, 90048, USA
2. Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
Abstract:The identification of tumour-associated antigens has opened up new approaches to cancer immunotherapy. While past research focused on CD8+ cytotoxic T-cell responses, accumulating evidence suggests that CD4+ T cells also play an important role in orchestrating the host immune response against cancer. In this article, we summarise new strategies for the identification of major histocompatibility complex (MHC) class II-associated tumour antigens and discuss the importance of engaging both CD4+ and CD8+ T cells in cancer immunotherapy. The cloning of MHC class I- or class II-associated antigens has made it possible to develop synthetic and recombinant cancer vaccines that express specific tumour antigens. There are three major types of synthetic and recombinant cancer vaccines: recombinant viral and bacterial vaccines; naked DNA or RNA vaccines; and recombinant protein and peptide vaccines. In this article, we also discuss a new generation of recombinant cancer vaccines, ‘self-replicating’ DNA and RNA vaccines. Studies on the mechanisms of ‘self-replicating’ nucleic acid vaccines revealed that the enhanced immunogenicity was not due to an enhanced antigen expression, suggesting that the quantitative difference may not be as important as the qualitative difference in antigen presentation. The presence of the RNA replicase in the ‘self-replicating’ nucleic acid vaccines mimics alphavirus infection, which triggers the innate antiviral pathways of the host cells. Studies on how viral and cellular modulators of the innate antiviral pathways affect vaccine function should provide molecular insights crucial to future vaccine design.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号