首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of CCL2 antisense oligodeoxynucleotides on bacterial translocation and subsequent sepsis in severely burned mice orally infected with Enterococcus faecalis
Authors:Shigematsu Kenji  Kogiso Mari  Kobayashi Makiko  Herndon David N  Suzuki Fujio
Affiliation:Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555-0435, USA.
Abstract:Severely burned mice are susceptible to sepsis stemming from Enterococcus faecalis translocation due to the impaired generation of M1 macrophages (M1MΦs) in local translocation sites. In our previous studies, CCL2 has been characterized as a major effector molecule on the burn-associated generation of M2MΦs, an inhibitor cell type for resident MΦ conversion into M1MΦs. In this study, we tried to protect burned mice orally infected with E. faecalis utilizing CCL2 antisense oligodeoxynucleotides (ODNs). We show that M2MΦs in mesenteric lymph nodes (MLNs) were not demonstrated in burned mice treated with CCL2 antisense ODNs. M1MΦs were not induced by heat-killed E. faecalis from resident MΦs transwell-cultured with mesenteric lymph node macrophages (MLN-MΦs) from burned mice, while M1MΦs were induced by the same antigen from resident MΦs transwell-cultured with MΦs which were isolated from burned mice treated with CCL2 antisense ODNs. Bacterial growth in MLNs was shown in burned mice orally infected with a lethal dose of E. faecalis. However, after the same infection, sepsis did not develop in burned mice treated with CCL2 antisense ODNs. These results indicate that bacterial translocation and subsequent sepsis are controlled in burned mice orally infected with a lethal dose of E. faecalis by gene therapy utilizing CCL2 antisense ODNs.
Keywords:Bacterial translocation  Burn  CCL2  Immunomodulation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号