首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas.
Authors:C Neuper  G Pfurtscheller
Affiliation:Department of Medical Informatics, Institute for Biomedical Engineering and Ludwig Boltzmann Institute for Medical Informatics and Neuroinformatics, Graz University of Technology, Inffelfgasse 16a/II, A-8010, Graz, Austria. neuper@dpmi.tu-graz.ac.at
Abstract:OBJECTIVE: We studied event-related synchronization (ERS) of beta rhythms related to voluntary movement vs. stimulation of upper and lower limbs. The aim of this study was to investigate whether the frequency of the beta response is related to specific regions within the sensorimotor strip. METHODS: Self-paced movement and electrical stimulation of the dominant hand and foot/leg was investigated in 10 right-handed volunteers. The electroencephalogram was recorded from closely spaced electrodes over central areas and processed time-locked to movement-offset or stimulation. In order to identify the dominant frequency of the induced beta oscillations, time-frequency maps were calculated using the continuous wavelet transformation. For the specific beta frequency bands, the band power time courses were analyzed by quantifying the event-related (de-)synchronization (ERD/ERS). RESULTS: Both limb movement and somatosensory stimulation induced bursts of beta oscillations appearing within 1 s after movement/stimulation with a clear focus close to the corresponding sensorimotor representation area. The peak frequency was significantly lower over the hand area (below approximately 20 Hz) than at mid-central sites overlying the foot representation area (above approximately 20 Hz). But no difference was found between movement and stimulation of the respective limb. CONCLUSIONS: Analyzing the frequency of induced beta activity revealed concomitant oscillations at slightly different frequencies over neighboring cortical areas. These oscillations might be indicative for a resonance-like behavior of connected sub-networks in sensorimotor areas.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号