首页 | 本学科首页   官方微博 | 高级检索  
检索        


Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells
Authors:C L Paíno  C Fernandez-Valle  M L Bates and M B Bunge
Institution:(1) The Chambers Family Electron Microscopy Laboratory, The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1600 N. W. 10th Avenue, R-48, 33136 Miami, FL, USA;(2) The Department of Neurological Surgery, University of Miami School of Medicine, 1600 N. W. 10th Avenue, R-48, 33136 Miami, FL, USA;(3) Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1600 N. W. 10th Avenue, R-48, 33136 Miami, FL, USA;(4) Present address: Dept. Investigatión, Hospital Ramón y Cajal, Ctra. Colmenar Km 9, 28034 Madrid, Spain
Abstract:Summary Highly purified populations of Schwann cells were grafted into lesioned adult rat spinal cord to determine if they promote axonal regeneration. Dorsal spinal cord lesions were created by a photochemical lesioning technique. Schwann cells derived from E16 rat dorsal root ganglia, either elongated and associated with their extracellular matrix or dissociated and without matrix, were rolled in polymerized collagen to form an implant 4–6 mm long which was grafted at 5 or 28 days after lesioning. No immunosuppression was used. Acellular collagen rolls served as controls. At 14, 28 and 90 days and 4 and 6 months after grafting, animals were analysed histologically with silver and Toluidine Blue stains and EM. The grafts often filled the lesion and the host borders they apposed exhibited only limited astrogliosis. By 14 days, bundles of unmyelinated and occasional thinly myelinated axons populated the periphery of Schwann cell implants. By 28 days and thereafter, numerous unmyelinated and myelinated axons were present in most grafts. Silver staining revealed sprouted axons at the implant border at 28 days and long bundles of axons within the implant at 90 days. Photographs of entire 1 mgrm plastic cross-sections of nine grafted areas were assembled into montages to count the number of myelinated axons at the graft midpoint; the number of myelinated axons ranged from 517–3214. Electron microscopy of implants showed typical Schwann cell ensheathment and myelination, increased myelin thickness by 90 days, and a preponderance of unmyelinated over myelinated axons. Random EM sampling of five Schwann cell grafts snowed that the ratio of unmyelinated to myelinated axons was highest (20ratio1) at 28 days. These ratios implied that axons numbered in the thousands at the graft midpoint. Dissociated Schwann cells without matrix promoted axonal ingrowth and longitudinal orientation as effectively as did elongated Schwann cells accompanied by matrix. There was a suggestion that axonal ingrowth was at least as successful, if not more so, when the delay between lesioning and grafting was 28 rather than 5 days. Acellular collagen grafts did not contain axons at 28 days, the only interval assessed. In sum, grafts of Schwann cells in a rolled collagen layer filled the lesion and were well tolerated by the host. The Schwann cells stimulated rapid and abundant growth of axons into grafts and they ensheathed and myelinated these axons in the normal manner.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号