首页 | 本学科首页   官方微博 | 高级检索  
     

基于脑功能网络的抑郁症识别研究
引用本文:张冰涛,周文颖,李延林,常文文,徐斌斌. 基于脑功能网络的抑郁症识别研究[J]. 生物医学工程学杂志, 2022, 0(1)
作者姓名:张冰涛  周文颖  李延林  常文文  徐斌斌
作者单位:兰州交通大学电子与信息工程学院;兰州交通大学光电技术与智能控制教育部重点实验室;兰州大学信息科学与工程学院;中国科学院近代物理研究所
基金项目:国家自然科学基金资助项目(61962034);甘肃省自然科学基金资助项目(20JR10RA211);兰州交通大学‘天佑青年托举人才计划’基金资助项目;甘肃省高等学校青年博士基金资助项目(2021QB-053)。
摘    要:传统基于脑电(EEG)的抑郁症研究将电极视为孤立节点,忽略了它们之间的关联性,难以发掘抑郁症患者异常大脑拓扑改变。为此,本文提出一种基于脑功能网络(BFN)的抑郁症识别框架,为避免容积导体效应,相位延迟指数用于构建BFN;以加权与二值化BFN信息互补为基础,选取"小世界"特性密切相关及最小生成树特定脑区BFN指标,采用递进式指标分析策略寻找抑郁症识别潜在标识物。本文以48名受试者静息态EEG数据用于验证方案,结果表明组间同步性在左颞、右顶枕、右额脑区明显改变;加权BFN最短路径长度和聚类系数,二值化BFN左颞和右额的叶子分数及右顶枕的直径与患者健康问卷9项(PHQ-9)之间具有相关性,且获得最高94.11%的识别率。此外,研究发现相对于健康对照者,抑郁症患者的信息处理能力明显下降。通过上述结论,期望本研究结果可为BFN构建与分析提供新的思路,为抑郁症识别潜在标识物的发掘提供新的方法。

关 键 词:抑郁症  脑功能网络  静息态脑电  相位延迟指数

Research on depression recognition based on brain function network
ZHANG Bingtao,ZHOU Wenying,LI Yanlin,CHANG Wenwen,XU Binbin. Research on depression recognition based on brain function network[J]. Journal of biomedical engineering, 2022, 0(1)
Authors:ZHANG Bingtao  ZHOU Wenying  LI Yanlin  CHANG Wenwen  XU Binbin
Affiliation:(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,P.R.China;Key Laboratory of Opto-technology and Intelligent Control Ministry of Education,Lanzhou Jiaotong University,Lanzhou 730070,P.R.China;School of Information Science and Engineering,Lanzhou University,Lanzhou 730000,P.R.China;Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,P.R.China)
Abstract:Traditional depression research based on electroencephalogram(EEG)regards electrodes as isolated nodes and ignores the correlation between them.So it is difficult to discover abnormal brain topology alters in patients with depression.To resolve this problem,this paper proposes a framework for depression recognition based on brain function network(BFN).To avoid the volume conductor effect,the phase lag index is used to construct BFN.BFN indexes closely related to the characteristics of“small world”and specific brain regions of minimum spanning tree were selected based on the information complementarity of weighted and binary BFN and then potential biomarkers of depression recognition are found based on the progressive index analysis strategy.The resting state EEG data of 48 subjects was used to verify this scheme.The results showed that the synchronization between groups was significantly changed in the left temporal,right parietal occipital and right frontal,the shortest path length and clustering coefficient of weighted BFN,the leaf scores of left temporal and right frontal and the diameter of right parietal occipital of binary BFN were correlated with patient health questionnaire 9-items(PHQ-9),and the highest recognition rate was 94.11%.In addition,the study found that compared with healthy controls,the information processing ability of patients with depression reduced significantly.The results of this study provide a new idea for the construction and analysis of BFN and a new method for exploring the potential markers of depression recognition.
Keywords:Depression  Brain function network  Resting state electroencephalogram  Phase lag index
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号