首页 | 本学科首页   官方微博 | 高级检索  
检索        


Antipyretic Effect of Herba Ephedrae-Ramulus Cinnamomi Herb Pair on Yeast-Induced Pyrexia Rats: A Metabolomics Study
Authors:WANG Xiao-ming  XU Wen-jie  XU Liang-kui and LUO Jia-bo
Institution:1.School of Traditional Chinese Medical Sciences,Southern Medical University,Guangzhou,China;2.School of Pharmacy,Guangdong Pharmaceutical University,Guangzhou,China;3.Department of Traditional Chinese Medicine Pharmaceutics,Guangdong Second Traditional Chinese Medicine Hospital,Guangzhou,China;4.Guangdong Provincial Key Laboratory of Research and Development of Traditional Chinese Medicine, Guangdong Province Engineering,Technology Research Institute of Traditional Chinese Medicine,Guangzhou,China
Abstract:

Objective

To investigate the antipyretic mechanism of Herba Ephedrae (Eph)-Ramulus Cinnamomi (RC) herb pair on yeast-induced pyrexia in rats.

Methods

Totally 30 qualified male SD rats were randomly assigned to the normal control (NC) group, the pyrexia model (model) group, the Eph, RC and Eph-RC treatment groups by a random digital table, 6 rats in each group. Each rat received a 20% aqueous suspension of yeast (10 mL/kg) except the NC group. The 3 treatment groups were administered 8.1, 5.4 and 13.5 g/kg Eph, RC and Eph-RC respectively at 5 and 12 h after yeast injection, the NC group and the model groups were administered equal volume of distilled water. Rectal temperatures were measured at 0, 6, 8, 10, 12, 15, 18, 24 and 30 h and urine was collected prior to yeast injection and at 6, 10, 18, 24, 30, and 36 h after yeast injection. Then urine metabolomic profiling by gas chromatography tandem mass spectrometry, coupled with multivariate statistical analysis and pattern recognition techniques were used to explore the antipyretic effects of Eph-RC. Partial least squares discriminate analysis was used to analyze the metabolomics dataset including classification and regression in metabolomics plot profiling.

Results

Compared with the NC group, rectal temperatures were significantly higher in the model group (P<0.01), while 3 treatment groups decreased significantly compared with the model group (P<0.05 or P<0.01). Rectal temperatures of Eph-RC-treated rats started to go down at 6 h, and markedly decreased at 8, 12, 15, 18 and 24 h (P<0.05 or P<0.01), while those of the Eph and RC groups had decreased firstly at 8 h and were markedly lower at 12 h (P<0.05 or P<0.01). Seventeen potential biomarkers related to pyrexia were confirmed and identified, including pyruvic acid, L-phenylalanine, L-tyrosine, phenylacetic acid, hippuric acid, succinic acid, citrate and so on. Eight potential alterations of metabolic pathways including phenylalanine metabolism, citrate cycle, tryptophan metabolism, biosynthesis of valine, leucine and isoleucine, were identified in relation to the antipyretic effects of Eph-RC using MetPA software.

Conclusion

The antipyretic effect of Eph-RC herb pair on yeast-induced pyrexia in rats involved correction of perturbed amino acid, fatty acid, and carbohydrate metabolism according to the metabolic pathway analysis with MetPA.
Keywords:Chinese medicine  Herba Ephedrae  Ramulus Cinnamomi  herb pair  principal component analysis  partial least squares-discriminant analysis  biomarker
本文献已被 SpringerLink 等数据库收录!
点击此处可从《Chinese Journal of Integrated Traditional and Western Medicine》浏览原始摘要信息
点击此处可从《Chinese Journal of Integrated Traditional and Western Medicine》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号