首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effect of sensory stimulus on striatal dopamine release in humans and cats: a [(11)C]raclopride PET study
Authors:Thobois Stephane  Hassoun Waddad  Ginovart Nathalie  Garcia-Larrea Luis  Le Cavorsin Marion  Guillouet Stephane  Bonnefoi Frederic  Costes Nicolas  Lavenne Franck  Broussolle Emmanuel  Leviel Vincent
Institution:Service de Neurologie D and INSERM U 534, Hopital Neurologique et Neurochirurgical Pierre Wertheimer, Lyon, France. s.thobois@ion.ucl.ac.uk
Abstract:BACKGROUND: Sensory stimulation of the forelimb extremities constitutes a well-established experimental model that has consistently shown to activate dopamine (DA) neurotransmission in the mammals' forebrain. OBJECTIVES: To visualize in vivo this modification of striatal DA release in healthy human volunteers using Positron Emission Tomography (PET) and (11)C]raclopride. Experiments in humans were paralleled by experiments in anesthetized cats. Changes in endogenous DA release were assessed through its competition with (11)C]raclopride binding (BP(raclo)), a radioligand probing DA D2-receptors. RESULTS: In humans no significant difference of BP(raclo) in caudate (with sensory stimulation: 2.0 +/- 0.3 versus without sensory stimulation: 2.2 +/- 0.3; P = 0.3) or putamen (2.6 +/- 0.3 versus 2.6 +/- 0.2; P = 0.9) ipsilateral to the stimulus was disclosed as a result of sensory stimulation. Similarly, no change of BP(raclo) was observed contralaterally to the stimulation in the caudate nucleus (with sensory stimulation: 2.0 +/- 0.4 versus without sensory stimulation: 2.1 +/- 0.2; P = 0.5) and the putamen (2.5 +/- 0.4 versus 2.6 +/- 0.2; P = 0.4). In cats the same results were obtained in the ipsilateral to stimulation striatum (with sensory stimulation: 2.5 +/- 0.03 versus without sensory stimulation: 2.4 +/- 0.05; P = 0.7). No change was also observed contralaterally to the stimulation (2.4 +/- 0.04 versus 2.5 +/- 0.06; P = 0.6). The (11)C]raclopride binding remained unchanged by sensory stimuli in both humans and cats. CONCLUSION: This suggests that the DA release induced by sensory stimulus is mostly extrasynaptic whereas the synaptic DA release is probably small, which fits well with the absence of (11)C]raclopride displacement. The mechanism of this extrasynaptic DA release could be related to a local action of glutamate on dopaminergic terminals via a thalamo-cortico-striatal loop. Present results also underline homology between cat and human responses to sensory stimuli and validate the use of cat brain to find physiological concepts in humans.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号