Thermal-stability of the enhanced piezoelectric,energy storage and electrocaloric properties of a lead-free BCZT ceramic |
| |
Authors: | Soukaina Merselmiz,Zouhair Hanani,Daoud Mezzane,Anna G. Razumnaya,M'barek Amjoud,Lahoucine Hajji,Svitlana Terenchuk,Brigita Rož ič ,Igor A. Luk'yanchuk,Zdravko Kutnjak |
| |
Affiliation: | IMED-Lab, Cadi Ayyad University, Marrakesh 40000 Morocco.; ICMCB, University of Bordeaux, Pessac 33600 France ; LPMC, University of Picardy Jules Verne, Amiens 80039 France ; Faculty of Physics, Southern Federal University, Rostov-on-Don 344090 Russia ; Department of Building Materials, Kyiv National University of Construction and Architecture, Kyiv 03680 Ukraine ; Jožef Stefan Institute, Ljubljana 1000 Slovenia |
| |
Abstract: | The lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) relaxor ferroelectric ceramic has aroused much attention due to its enhanced piezoelectric, energy storage and electrocaloric properties. In this study, the BCZT ceramic was elaborated by the solid-state reaction route, and the temperature-dependence of the structural, electrical, piezoelectric, energy storage and electrocaloric properties was investigated. X-ray diffraction analysis revealed a pure perovskite phase, and the temperature-dependence of Raman spectroscopy, dielectric and ferroelectric measurements revealed the phase transitions in the BCZT ceramic. At room temperature, the strain and the large-signal piezoelectric coefficient reached a maximum of 0.062% and 234 pm V−1, respectively. Furthermore, enhanced recovered energy density (Wrec = 62 mJ cm−3) and high-energy storage efficiency (η) of 72.9% at 130 °C were found. The BCZT ceramic demonstrated excellent thermal stability of the energy storage variation (ESV), less than ±5.5% in the temperature range of 30–100 °C compared to other lead-free ceramics. The electrocaloric response in the BCZT ceramic was explored via the indirect approach by using the Maxwell relation. Significant electrocaloric temperature change (ΔT) of 0.57 K over a broad temperature span (Tspan = 70 °C) and enhanced coefficient of performance (COP = 11) were obtained under 25 kV cm−1. The obtained results make the BCZT ceramic a suitable eco-friendly material for energy storage and solid-state electrocaloric cooling devices.High-thermal stability of the recovered energy density and significant electrocaloric temperature change over a broad temperature span in a lead-free BCZT ceramic. |
| |
Keywords: | |
|
|