首页 | 本学科首页   官方微博 | 高级检索  
检索        


Catalytically active nanosized Pd9Te4 (telluropalladinite) and PdTe (kotulskite) alloys: first precursor-architecture controlled synthesis using palladium complexes of organotellurium compounds as single source precursors
Authors:Aayushi Arora  Preeti Oswal  Gyandshwar K Rao  Sushil Kumar  Ajai K Singh  Arun Kumar
Institution:Department of Chemistry, School of Physical Sciences, Doon University, Dehradun Uttarakhand 248012 India.; Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana (AUH), Gurgaon Haryana 122413 India ; Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016 India
Abstract:Several intermetallic binary phases of Pd–Te including Pd3Te2, PdTe, PdTe2, Pd9Te4, Pd3Te, Pd2Te, Pd20Te7, Pd8Te3, Pd7Te2, Pd7Te3, Pd4Te and Pd17Te4 are known, and negligible work (except few studies on PdTe) has been done on exploring applications of such phases and their fabrication at nanoscale. Hence, Pd(ii) complexes Pd(L1)Cl2 and Pd(L2-H)Cl (L1): Ph–Te–CH2–CH2–NH2 and L2: HO–2-C6H4–CH Created by potrace 1.16, written by Peter Selinger 2001-2019 N–CH2CH2–Te–Ph were synthesized. Under similar thermolytic conditions, complex Pd(L1)Cl2 with bidentate coordination mode of ligand provided nanostructures of Pd9Te4 (telluropalladinite) whereas Pd(L2-H)Cl with tridentate coordination mode of ligand yielded PdTe (kotulskite). Bimetallic alloy nanostructures possess high catalytic potential for Suzuki coupling of aryl chlorides, and reduction of 4-nitrophenol. They are also recyclable upto six reaction cycles in Suzuki coupling.

First precursor-architecture controlled synthesis of Pd9Te4 and PdTe nanostructures that have potential applications in Suzuki coupling of 4-chlorobenzaldehyde and catalytic reduction of 4-nitrophenol.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号