首页 | 本学科首页   官方微博 | 高级检索  
     


SK&F 83822 distinguishes adenylyl cyclase from phospholipase C-coupled dopamine D1-like receptors: behavioural topography
Authors:O'Sullivan Gerard J  Roth Bryan L  Kinsella Anthony  Waddington John L
Affiliation:Department of Clinical Pharmacology and Institute of Biopharmaceutical Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
Abstract:Effects of SK&F 83822 [3-allyl-6-chloro-7,8-dihydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine], an agonist at dopamine D1-like receptors which stimulate adenylyl cyclase but not phosphoinositide hydrolysis, were studied topographically so as to clarify differences between these receptors in the regulation of behaviour. Using cloned receptors, SK&F 83822 showed high, selective affinity for dopamine D1 and D5 over D2, D3, D4 and several non-dopamine receptors. SK&F 83822 induced little intense grooming, but readily induced sniffing, locomotion and rearing; seizures were evident at higher doses, characterised by tonic convulsions, forepaw myoclonus and explosive hyperlocomotion. The dopamine D1-like receptor antagonist SCH 23390 [R(+)-3-methyl-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine] readily antagonised these responses to SK&F 83822, particularly seizure activity. The dopamine D2-like receptor antagonist YM 09151-2 [cis-N-(1-benzyl-2-methyl-pyrrolidin-3-yl)-5-chloro-2-methoxy-4-methylaminobenzamide] did not alleviate seizures induced by SK&F 83822; YM 09151-02 did, however, attenuate SK&F 83822-induced sniffing, locomotion and rearing, and released vacuous chewing. These findings indicate that dopamine D1-like receptors linked to adenylyl cyclase can be differentiated from those not linked to adenylyl cyclase in terms of their roles in the topographical regulation of behaviour. For example, the seizure and vacuous chewing responses appear to involve dopamine D1-like receptors that stimulate adenylyl cyclase, while intense grooming involves those which do not.
Keywords:Dopamine D1-like receptor   Adenylyl cyclase-coupled   Non-adenylyl cyclase-coupled   SK&  F 83822   Behavioural topography   Dopamine D1-like: D2-like receptor interaction   (Mouse)
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号