首页 | 本学科首页   官方微博 | 高级检索  
     


Synthetic scaffold morphology controls human dermal connective tissue formation
Authors:Wang Hongjun  Pieper Jeroen  Péters Fabienne  van Blitterswijk Clemens A  Lamme Evert N
Affiliation:Institute of Biomedical Technology, Twente University, Enschede, The Netherlands.
Abstract:Engineering tissues in bioreactors is often hampered by disproportionate tissue formation at the surface of scaffolds. This hinders nutrient flow and retards cell proliferation and tissue formation inside the scaffold. The objective of this study was to optimize scaffold morphology to prevent this from happening and to determine the optimal scaffold geometric values for connective tissue engineering. After comparing lyophilized crosslinked collagen, compression molded/salt leached PEGT/PBT copolymer and collagen-PEGT/PBT hybrid scaffolds, the PEGT/PBT scaffold was selected for optimization. Geometric parameters were determined using SEM, microcomputed tomography, and flow permeability measurements. Fibroblast were seeded and cultured under dynamic flow conditions for 2 weeks. Cell numbers were determined using CyQuant DNA assay, and tissue distribution was visualized in H&E- and Sirius Red-stained sections. Scaffolds 0.5 and 1.5 mm thick showed bridged connected tissue from top-to-bottom, whereas 4-mm-thick scaffolds only revealed tissue ingrowth until a maximum depth of 0.6-0.8 mm. Rapid prototyped scaffold were used to assess the maximal void space (pore size) that still could be filled with tissue. Tissue bridging between fibers was only found at fiber distances < or =401 +/- 60 microm, whereas filling of void spaces in 3D-deposited scaffolds only occurred at distances < or =273 +/- 55 microm. PEGT/PBT scaffolds having similar optimal porosities, but different average interconnected pore sizes of 142 +/- 50, 160 +/- 56 to 191 +/- 69 microm showed comparable seeding efficiencies at day 1, but after 2 weeks the total cell numbers were significantly higher in the scaffolds with intermediate and high interconnectivity. However, only scaffolds with an intermediate interconnectivity revealed homogenous tissue formation throughout the scaffold with complete filling of all pores. In conclusion, significant amount of connective tissue was formed within 14 days using a dynamic culture process that filled all void spaces of a PEGT/PBT scaffolds with the following geometric parameters: thickness 1.5-1.6 mm, pore size range 90-360 microm, and average interconnecting pore size of 160 +/- 56 microm.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号