Effect of extracellular pH on recombinant alpha1beta2gamma2 and alpha1beta2 GABAA receptors |
| |
Authors: | Mercik Katarzyna Pytel Maria Cherubini Enrico Mozrzymas Jerzy W |
| |
Affiliation: | Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Chalubinskiego 3, 50-368 Wroclaw, Poland. kasia@biofiz.am.wroc.pl |
| |
Abstract: | Recently, we have reported that extracellular protons allosterically modulated neuronal GABA(A) receptors [Mozrzymas, J.W., Zarnowska, E.D., Pytel, M., Mercik, K., 2003a. Modulation of GABA(A) receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of desensitiztion process. Journal of Neuroscience 23, 7981-7992]. However, GABAARs in neurons are heterogeneous and the effect of hydrogen ions depends on the receptor subtype. In particular, gamma2 subunit sets the receptor sensibility to several modulators including protons. However, the mechanisms whereby protons modulate gamma2-containing and gamma2-free GABAARs have not been fully elucidated. To this end, current responses to ultrafast GABA applications were recorded for alpha1beta2gamma2 and alpha1beta2 receptors at different pH values. For both receptor types, increase in pH induced a decrease in amplitudes of currents elicited by saturating [GABA] but this effect was stronger for alpha1beta2 receptors. In the case of alpha1beta2gamma2 receptors, protons strongly affected the current time course due to a down regulation of binding and desensitization rates. This effect was qualitatively similar to that described in neurons. Protons strongly influenced the amplitude of alpha1beta2 receptor-mediated currents but the effect on their kinetics was weak suggesting a predominant direct non-competitive inhibition with a minor allosteric modulation. In conclusion, we provide evidence that extracellular protons strongly affect GABAA receptors and that, depending on the presence of the gamma2 subunit, the modulatory mechanisms show profound quantitative and qualitative differences. |
| |
Keywords: | Patch-clamp Recombinant GABAA receptors HEK Ultrafast perfusion system pH |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|