首页 | 本学科首页   官方微博 | 高级检索  
检索        


Sex differences in circadian timing systems: Implications for disease
Authors:Matthew Bailey  Rae Silver
Institution:1. Department of Psychology, Columbia University, United States;2. Department of Psychology, Barnard College, United States;3. Department of Pathology and Cell Biology, Columbia University Medical Center, United States
Abstract:Virtually every eukaryotic cell has an endogenous circadian clock and a biological sex. These cell-based clocks have been conceptualized as oscillators whose phase can be reset by internal signals such as hormones, and external cues such as light. The present review highlights the inter-relationship between circadian clocks and sex differences. In mammals, the suprachiasmatic nucleus (SCN) serves as a master clock synchronizing the phase of clocks throughout the body. Gonadal steroid receptors are expressed in almost every site that receives direct SCN input. Here we review sex differences in the circadian timing system in the hypothalamic–pituitary–gonadal axis (HPG), the hypothalamic–adrenal–pituitary (HPA) axis, and sleep–arousal systems. We also point to ways in which disruption of circadian rhythms within these systems differs in the sexes and is associated with dysfunction and disease. Understanding sex differentiated circadian timing systems can lead to improved treatment strategies for these conditions.
Keywords:5-FU  5-fluorouracil  5-HT  serotonergic  E2  17β-estradiol  ACTH  adrenocorticotropic hormone  AMY  amygdala  ANS  autonomic nervous system  AP  action potential  AR  androgen receptors  ARC  arcuate nucleus  AVP  arginine vasopressin  AVPV  anterolateral paraventricular nucleus  BMAL1  brain and muscle ARNT-like protein1  BNST  bed nucleus of the stria terminalis  c-fos  denoting the gene or mRNA  C-FOS  denoting the protein  CRH  corticotropin releasing hormone  DD  constant darkness  DHT  dihydrotestosterone  DMH  dorsomedial hypothalamus  DR  dorsal raphe  DSPS  Delayed Sleep Phase Syndrome  EEG  electroencephalography  EP  estradiol plus progesterone  ER  estrogen receptors  ERα  estrogen receptor alpha  FASPS  Familial Advanced Sleep Phase Syndrome  GC  glucocortocoids  GDX  gonadectomy  GHT  geniculo-hypothalamic tract  GnIH  gonadotropin inhibiting hormone  GnRH  gonadotropin releasing hormone  GR  glucocortocoid receptor  GRP  gastrin-releasing peptide  HA  histamine  HB  habenula  HPA  hypothalamic&ndash  adrenal  HPG  hypothalamic&ndash  pituitary&ndash  gonadal  IGL  intergeniculate leaflet  IML  intermediolateral column  Kiss1  kisspeptin  Kiss1 R  Kiss1 receptor  KO  knock out  LC  locus coeruleus  LD  light-dark  LH  luteinizing hormone  LHA  lateral hypothalamic area  LS  lateral septum  MnPO  median preoptic area  mPOA  medial preoptic area  mpPVN  medial parvocellular PVN  MR  medial raphe  MUA  multi-unit neural activity  NA  norandrenergic  Npas2  Neuronal PAS domain-containing protein 2  OVX  ovariectomized  P  progesterone  PER1  Period1 protein  Per1  Period1 gene or mRNA  PER2  Period2 protein  Per2  Period2 gene or mRNA  POA  preoptic area  PVA  anterior paraventricular thalamic nuclei  PVN  paraventricular nucleus of the hypothalamus  Rch  retrochiasmatic area  RHT  retinohypothalamic tract  SCN  suprachiasmatic nuclei  SD  sleep deprivation  sPVZ  sub paraventricular zone SWA  slow wave activity  T  testosterone  TH  tyrosine hydroxylase  TMN  tuberomammillary nucleus  VIP  vasoactive intestinal polypeptide  VMH  ventromedial nucleus of the hypothalamus  VNTR  variable nucleotide tandem repeat  VLPO  ventrolateral preoptic area  WT  wild type
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号