首页 | 本学科首页   官方微博 | 高级检索  
     


Development of the vagal innervation of the gut: steering the wandering nerve
Authors:E. M. Ratcliffe  N. R. Farrar  E. A. Fox
Affiliation:1. Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, Canada;2. Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada;3. Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
Abstract:Background The vagus nerve is the major neural connection between the gastrointestinal tract and the central nervous system. During fetal development, axons from the cell bodies of the nodose ganglia and the dorsal motor nucleus grow into the gut to find their enteric targets, providing the vagal sensory and motor innervations respectively. Vagal sensory and motor axons innervate selective targets, suggesting a role for guidance cues in the establishment of the normal pattern of enteric vagal innervation. Purpose This review explores known molecular mechanisms that guide vagal innervation in the gastrointestinal tract. Guidance and growth factors, such as netrin‐1 and its receptor, deleted in colorectal cancer, extracellular matrix molecules, such as laminin‐111, and members of the neurotrophin family of molecules, such as brain‐derived neurotrophic factor have been identified as mediating the guidance of vagal axons to the fetal mouse gut. In addition to increasing our understanding of the development of enteric innervation, studies of vagal development may also reveal clinically relevant insights into the underlying mechanisms of vago‐vagal communication with the gastrointestinal tract.
Keywords:axon guidance  dorsal motor nucleus  enteric nervous system  gastrointestinal tract  nodose ganglia  vagus nerve
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号