首页 | 本学科首页   官方微博 | 高级检索  
检索        


A Nonlinear Finite Volume Scheme Preserving Maximum Principle for Diffusion Equations
Authors:Jinjing Xu  Fei Zhao  Zhiqiang Sheng & Guangwei Yuan
Abstract:In this paper we propose a new nonlinear cell-centered finite volume scheme on general polygonal meshes for two dimensional anisotropic diffusion problems, which preserves discrete maximum principle (DMP). The scheme is based on the so-called diamond scheme with a nonlinear treatment on its tangential flux to obtain a local maximum principle (LMP) structure. It is well-known that existing DMP preserving diffusion schemes suffer from the fact that auxiliary unknowns should be presented as a convex combination of primary unknowns. In this paper, to get rid of this constraint a nonlinearization strategy is introduced and it requires only a second-order accurate approximation for auxiliary unknowns. Numerical results show that this scheme has second-order accuracy, preserves maximum and minimum for solutions and is conservative.
Keywords:Maximum principle  finite volume scheme  diffusion equation  
点击此处可从《》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号