首页 | 本学科首页   官方微博 | 高级检索  
     


From the Cover: Leukocyte immunoglobulin-like receptor B1 is critical for antibody-dependent dengue
Authors:Kuan Rong Chan  Eugenia Z. Ong  Hwee Cheng Tan  Summer Li-Xin Zhang  Qian Zhang  Kin Fai Tang  Nivashini Kaliaperumal  Angeline Pei Chiew Lim  Martin L. Hibberd  Soh Ha Chan  John E. Connolly  Manoj N. Krishnan  Shee Mei Lok  Brendon J. Hanson  Chao-Nan Lin  Eng Eong Ooi
Abstract:Viruses must evade the host innate defenses for replication and dengue is no exception. During secondary infection with a heterologous dengue virus (DENV) serotype, DENV is opsonized with sub- or nonneutralizing antibodies that enhance infection of monocytes, macrophages, and dendritic cells via the Fc-gamma receptor (FcγR), a process termed antibody-dependent enhancement of DENV infection. However, this enhancement of DENV infection is curious as cross-linking of activating FcγRs signals an early antiviral response by inducing the type-I IFN-stimulated genes (ISGs). Entry through activating FcγR would thus place DENV in an intracellular environment unfavorable for enhanced replication. Here we demonstrate that, to escape this antiviral response, antibody-opsonized DENV coligates leukocyte Ig-like receptor-B1 (LILRB1) to inhibit FcγR signaling for ISG expression. This immunoreceptor tyrosine-based inhibition motif-bearing receptor recruits Src homology phosphatase-1 to dephosphorylate spleen tyrosine kinase (Syk). As Syk is a key intermediate of FcγR signaling, LILRB1 coligation resulted in reduced ISG expression for enhanced DENV replication. Our findings suggest a unique mechanism for DENV to evade an early antiviral response for enhanced infection.Despite long-lived serotype-specific immunity upon initial infection, predicted global prevalence of dengue now surpasses World Health Organization estimates by more than threefold with 390 million cases annually (1). Furthermore, the risk of severe disease is augmented by cross-reactive or subneutralizing levels of antibody (2, 3), which opsonize dengue virus (DENV) to ligate Fc-gamma receptor (FcγR) for entry into monocytes, macrophages, and dendritic cells, a phenomenon known as antibody-dependent enhancement (ADE) of DENV infection (4, 5). The resultant greater viral burden leads to increased systemic inflammation that precipitates plasma leakage, a hallmark of dengue hemorrhagic fever (6). However, ligation of the activating FcγRs by immune complexes has been shown to induce type-I IFN stimulated genes (ISGs), independent of autocrine or paracrine IFN activity, unless the inhibitory FcγRIIB is coligated (7). We and others reported recently that coligation of FcγRIIB by DENV immune complexes requires high antibody concentration, and such coligation inhibited the entry of DENV immune complexes into monocytes (8, 9). At low antibody concentrations where ADE occurs, the inhibitory FcγRIIB is not coligated (9). Ligation of the activating FcγRs by DENV opsonized with subneutralizing levels of antibody would thus induce the expression of ISGs and hinder DENV replication (10). Here, we demonstrate that DENV employs a unique evasive mechanism by coligating LILRB1 to down-regulate the early antiviral responses triggered by activating FcγRs for ADE.
Keywords:early innate immune response   innate immune signaling   immune evasion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号