首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment
Authors:Shilo Rosenwasser  Shiri Graff van Creveld  Daniella Schatz  Sergey Malitsky  Oren Tzfadia  Asaph Aharoni  Yishai Levin  Alexandra Gabashvili  Ester Feldmesser  Assaf Vardi
Institution:aDepartment of Plant Sciences and;bIsrael National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
Abstract:Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of 15N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.Aerobic organisms produce reactive oxygen species (ROS) as a byproduct of oxygen-based metabolic pathways, such as photosynthesis, photorespiration, and oxidative phosphorylation (1). Perturbations in oxygenic metabolism under various stress conditions can induce oxidative stress from overproduction of ROS (2, 3). Because ROS are highly reactive forms of oxygenic metabolites, critical mechanisms for ROS detoxification have evolved consisting of ROS-scavenging enzymes and small molecules, including glutathione (GSH) (4). As the most abundant low molecular weight thiol antioxidant, GSH has critical roles in maintaining a proper cellular thiol–disulfide balance and in detoxifying H2O2 via the ascorbate–GSH cycle (5).Although classically ROS were considered toxic metabolic byproducts that ultimately lead to cell death, it is now recognized that ROS act as central secondary messengers involved in compartmentalized signaling networks (1, 68). Modulation of various cell processes by ROS signaling is mediated largely by posttranslational thiol oxidation, whereby their physical structure and biochemical activity are modified upon oxidation (9). Thus, the redox states of these proteins possess crucial information needed for cell acclimation to stress conditions (10, 11). The emergence of advanced redox proteomic approaches, such as the OxICAT method (12), has created new opportunities to identify redox-sensitive proteins (e.g., redoxome) on the system level and to quantify their precise level of oxidation on exposure to environmental stress conditions.Marine photosynthetic microorganisms (phytoplankton) are the basis of marine food webs. Despite the fact that their biomass represents only approximately 0.2% of the photosynthetic biomass on earth, they are responsible for nearly 50% of the annual global carbon-based photosynthesis and greatly influence the global biogeochemical carbon cycle (13). This high ratio of productivity to biomass, reflected in high turnover rates, makes phytoplankton highly responsive to climate change. Phytoplankton can grow rapidly and form massive blooms that stretch over hundreds of kilometers in the oceans and are regulated by such environmental factors as nutrient availability and biotic interactions with grazers and viruses.Diatoms are a highly diverse clade of phytoplankton, responsible for roughly 20% of global primary productivity (14). Consequently, diatoms play a central role in the biogeochemical cycling of important nutrients, including carbon, nitrogen, and silica, which constitute part of their ornate cell wall. As members of the eukaryotic group known as stramenopiles (or heterokonts), diatoms are derived from a secondary endosymbiotic event involving red and green algae engulfed within an ancestral protest (15).The unique multilineage content of diatom genomes reveals a melting pot of biochemical characteristics that resemble bacterial, plant, and animal traits, including the integration of a complete urea cycle, fatty acid oxidation in the mitochondria, and plant C4-like related pathways (16, 17). During bloom succession, phytoplankton cells are subjected to diverse environmental stress conditions that lead to ROS production, such as allelopathic interactions (18), CO2 availability (19, 20), UV exposure (21), iron limitation (22), and viral infection (23). Recently reported evidence suggests that diatoms possess a surveillance system based on the induction of ROS that have been implicated in response to various environmental stresses (22, 24). Nevertheless, very little is known about cell signaling processes in marine phytoplankton and their potential role in acclimation to rapid fluctuations in the chemophysical gradients in the marine environment (25).Using a mass spectrometry-based approach, we examined the diatom redoxome and quantified its degree of oxidation under oxidative stress conditions. The wealth of recently identified redox-sensitive proteins participating in various cellular functions suggests a fundamental role of redox regulation in diatom biology. We mapped the redox-sensitive enzymes into a metabolic network and evaluated their role in the adjustment of metabolic flux under variable environmental conditions. We further explored the redox sensitivity of the primary nitrogen-assimilating pathway and demonstrated the role of compartmentalized redox regulation in cells under nitrogen stress conditions using a redox-sensitive GFP sensor targeted to specific subcellular localizations.
Keywords:phytoplankton  redox proteomics  roGFP  marine diatoms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号