首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid Materials Based on Fly Ash,Metakaolin, and Cement for 3D Printing
Authors:Joanna Marczyk,Celina Ziejewska,Szymon Gą  dek,Kinga Korniejenko,Michał   Ł  ach,Mateusz Gó  ra,Izabela Kurek,Neslihan Doğ  an-Sağ  lamtimur,Marek Hebda,Magdalena Szechyń  ska-Hebda
Abstract:Nowadays, one very dynamic development of 3D printing technology is required in the construction industry. However, the full implementation of this technology requires the optimization of the entire process, starting from the design of printing ideas, and ending with the development and implementation of new materials. The article presents, for the first time, the development of hybrid materials based on a geopolymer or ordinary Portland cement matrix that can be used for various 3D concrete-printing methods. Raw materials used in the research were defined by particle size distribution, specific surface area, morphology by scanning electron microscopy, X-ray diffraction, thermal analysis, radioactivity tests, X-ray fluorescence, Fourier transform infrared spectroscopy and leaching. The geopolymers, concrete, and hybrid samples were described according to compressive strength, flexural strength, and abrasion resistance. The study also evaluates the influence of the liquid-to-solid ratio on the properties of geopolymers, based on fly ash (FA) and metakaolin (MK). Printing tests of the analyzed mixtures were also carried out and their suitability for various applications related to 3D printing technology was assessed. Geopolymers and hybrids based on a geopolymer matrix with the addition of 5% cement resulted in the final materials behaving similarly to a non-Newtonian fluid. Without additional treatments, this type of material can be successfully used to fill the molds. The hybrid materials based on cement with a 5% addition of geopolymer, based on both FA and MK, enabled precise detail printing.
Keywords:3D printing   hybrids   fly ash   concrete   metakaolin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号