首页 | 本学科首页   官方微博 | 高级检索  
检索        


Muscarinic acetylcholine receptor activation enhances hippocampal neuron excitability and potentiates synaptically evoked Ca(2+) signals via phosphatidylinositol 4,5-bisphosphate depletion
Authors:Young Kenneth W  Billups Daniela  Nelson Carl P  Johnston Neil  Willets Jonathon M  Schell Michael J  Challiss R A John  Nahorski Stefan R
Institution:Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, UK. kwyl@le.ac.uk
Abstract:Using single cell Ca(2+) imaging and whole cell current clamp recordings, this study aimed to identify the signal transduction mechanisms involved in mACh receptor-mediated, enhanced synaptic signaling in primary cultures of hippocampal neurons. Activation of M(1) mACh receptors produced a 2.48 +/- 0.26-fold enhancement of Ca(2+) transients arising from spontaneous synaptic activity in hippocampal neurons. Combined imaging of spontaneous Ca(2+) signals with inositol 1,4,5-trisphosphate (IP(3)) production in single neurons demonstrated that the methacholine (MCh)-mediated enhancement required activated G(q/11)alpha subunits and phospholipase C activity but did not require measurable increases in IP(3). Electrophysiological studies demonstrated that MCh treatment depolarized neurons from -64 +/- 3 to -45 +/- 3 mV and increased action potential generation. Depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) enhanced neuronal excitability and prolonged the action of MCh. These studies suggest that, in addition to producing the second messengers IP(3) and diacylglycerol, mACh receptor activation may directly utilize PIP(2) hydrolysis to regulate neuronal excitability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号