首页 | 本学科首页   官方微博 | 高级检索  
     


Chronic Hyperprolactinemia and Changes in Dopamine Neurons
Authors:Puliyur S. Mohankumar  Sheba M.J. Mohankumar  S.Kaleem Quadri  James L. Voogt
Affiliation:aDepartment of Physiology, University of Kansas Medical Center, Kansas City, KS 66160USA;bDepartment of Anatomy and Physiology, VMS 228, Kansas State University, Manhattan, KS 66506USA
Abstract:The tuberoinfundibular dopaminergic (TIDA) system is known to inhibit prolactin (PRL) secretion. In young animals this system responds to acute elevations in serum PRL by increasing its activity. However, this responsiveness is lost in aging rats with chronically high serum PRL levels. The purpose of this study was to induce hyperprolactinemia in rats for extended periods of time and examine its effects on dopaminergic systems in the brain. Hyperprolactinemia was induced by treatment with haloperidol, a dopamine receptor antagonist, and Palkovits' microdissection technique in combination with high-performance liquid chromatography was used to measure neurotransmitter concentrations in several areas of the brain. After 6 months of hyperprolactinemia, dopamine (DA) concentrations in the median eminence (ME) increased by 84% over the control group. Nine months of hyperprolactinemia produced a 50% increase in DA concentrations in the ME over the control group. However, DA response was lost if a 9-month long haloperidol-induced hyperprolactinemia was followed by a 11

month-long extremely high increase in serum PRL levels produced by implantation of MMQ cells under the kidney capsule. There was no change in the levels of DA, norepinephrine (NE), serotonin (5-HT), or their metabolites in the arcuate nucleus (AN), medial preoptic area (MPA), caudate putamen (CP), substantia nigra (SN), and zona incerta (ZI), except for a decrease in 5-hydroxyindoleacetic acid (5-HIAA) in the AN after 6-months of hyperprolactinemia and an increase in DA concentrations in the AN after 9-months of hyperprolactinemia. These results demonstrate that hyperprolactinemia specifically affects TIDA neurons and these effects vary, depending on the duration and intensity of hyperprolactinemia. The age-related decrease in hypothalamic dopamine function may be associated with increases in PRL secretion.
Keywords:Prolactin   Catecholamines   Aging   Microdissection   HPLC-EC
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号