首页 | 本学科首页   官方微博 | 高级检索  
检索        


Generation of reactive oxygen species by lethal attacks from competing microbes
Authors:Tao G Dong  Shiqi Dong  Christy Catalano  Richard Moore  Xiaoye Liang  John J Mekalanos
Institution:aSnyder Institute for Chronic Diseases and Department of Ecosystem and Public Health, University of Calgary, Calgary, AB, Canada, T2N 4Z6; and;bDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115
Abstract:Whether antibiotics induce the production of reactive oxygen species (ROS) that contribute to cell death is an important yet controversial topic. Here, we report that lethal attacks from bacterial and viral species also result in ROS production in target cells. Using soxS as an ROS reporter, we found soxS was highly induced in Escherichia coli exposed to various forms of attacks mediated by the type VI secretion system (T6SS), P1vir phage, and polymyxin B. Using a fluorescence ROS probe, we found enhanced ROS levels correlate with induced soxS in E. coli expressing a toxic T6SS antibacterial effector and in E. coli treated with P1vir phage or polymyxin B. We conclude that both contact-dependent and contact-independent interactions with aggressive competing bacterial species and viruses can induce production of ROS in E. coli target cells.Microbial species exist predominantly in complex communities in the natural environment and animal hosts. To survive in a multispecies environment, bacteria have developed various strategies to compete with other species. For example, some bacteria can exert long-range inhibitory effects by secreting diffusible molecules, such as antibiotics, bacteriocins, and H2O2 (1), whereas others require direct cell-to-cell contact to kill nearby organisms (2, 3). One such contact-dependent inhibitory system is the type VI secretion system (T6SS), a protein translocating nanomachine expressed by many Gram-negative bacterial pathogens that can kill both bacterial and eukaryotic cells (35). Structurally analogous to an inverted bacteriophage tail, the T6SS delivers effectors into target cells by using a contractile sheath to propel an inner tube out of the producer cell and into nearby target cells. The inner tube (composed of Hcp protein) is thought to carry toxic effector proteins within its lumen or on its tip, which is decorated with VgrG and PAAR proteins (4, 6, 7). Given that some cells can detect T6SS attack but not suffer any measurable loss in viability (8, 9), it would seem that cell killing is likely due to the toxicity of effectors rather than membrane disruptions caused by insertion of the spear-like VgrG/PAAR/Hcp tube complex. T6SS-dependent effectors can attack a number of essential cellular targets, including the cell wall (10, 11), membranes (11, 12), and nucleic acids (13), and thus can mimic the actions of antibiotics and bacteriocins. As a model prey or target organism, Escherichia coli can be killed by the T6SS activities of a number of bacteria including Vibrio cholerae (14), Pseudomonas aeruginosa (10, 15), and Acinetobacter baylyi ADP1 (7).Collins and coworkers (1618) have reported that antibiotic treatment of E. coli elicits the production of reactive oxygen species (ROS) resulting from a series of events involving perturbation of the central metabolic pathway, NADPH depletion, and the Fenton reaction. ROS can cause lethal damage to DNA, lipid, and proteins (19, 20) and thus can contribute to cell death in combination with the deleterious effects of antibiotics on their primary targets. The idea that antibiotics kill bacterial cells, in part, through the action of ROS has been supported by a number of follow-up studies (18, 2123) but has also been challenged by others as a result of observations contradictory to a model where ROS is the sole mediator of antibiotic lethality (2426). These observations include the fact that antibiotics kill under anaerobic conditions, oxidation of the hydroxyphenyl fluorescein fluorescence dye used to measure ROS levels is nonspecific, and the extracellular level of H2O2 is not elevated by antibiotic treatment (24, 26). To address these concerns, Dwyer et al. (27) used a panel of ROS-detection fluorescence dyes, a defined growth medium under stringent anaerobic conditions, and an in vivo H2O2 enzymatic assay to study the effects of antibiotics on cells. The results further support that antibiotics induce ROS generation, which contributes to the efficacy of antibiotics in addition to their primary lethal actions (18, 27, 28).
Keywords:T6SS  reactive oxygen species  interspecies competition  antibiotics  phage
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号