首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of cromakalim (BRL 34915) on potassium conductances in CA3 neurons of the guinea-pig hippocampus in vitro
Authors:C. Alzheimer  B. Sutor  G. ten Bruggencate
Affiliation:(1) Physiologisches Institut der Universität, Pettenkoferstrasse 12, D-8000 München 2, Federal Republic of Germany
Abstract:Summary The action of the potassium channel activator, cromakalim (BRL 34915), on membrane potential, input resistance and current-voltage-relationship of CA3 neurons in a slice preparation of the guinea-pig hippocampus was investigated by means of intracellular recordings. In the presence of tetrodotoxin, cromakalim (30–100 mgrmol/l) produced a hyperpolarization up to 4 mV associated with a decrease in input resistance up to 10 MOhms. Determination of the equilibrium potential of the cromakalim action revealed that the hyperpolarization is due to the activation of a potassium conductance. This cromakalim-activated potassium conductance was voltage-dependent, i.e. it increased with hyperpolarization. Among a number of potassium channel blockers tested, only Cs+ (2 mmol/l) and Ba2+ (0.5 mmol/1) were able to inhibit the cromakalim-induced effects. Simultaneously, both cations suppressed the hyperpolarizing inward rectification (anomalous rectification) in these neurons, indicating that cromakalim activated or potentiated an inwardly rectifying potassium conductance. In addition, cromakalim slightly enhanced both amplitude and duration of afterhyperpolarizations following single calcium-dependent action potentials, suggesting that cromakalim might have a weak facilitatory effect on calcium-dependent potassium conductances.Send offprint requests to C. Alzheimer at the above address
Keywords:Hippocampal slice  CA3  Cromakalim (BRL 34915)  Potassium conductances  Anomalous rectification
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号