首页 | 本学科首页   官方微博 | 高级检索  
检索        


Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae)
Authors:Salunkhe Rahul B  Patil Satish V  Patil Chandrashekhar D  Salunke Bipinchandra K
Institution:(1) School of Life Sciences, North Maharashtra University, Post Box-80, Jalgaon, 425001, Maharashtra, India;(2) North Maharashtra Microbial Culture Collection Centre (NMCC), North Maharashtra University, Post Box-80, Jalgaon, 425001, Maharashtra, India;
Abstract:Larvicides play a vital role in controlling mosquitoes in their breeding sites. The present study was carried out to establish the larvicidal activities of mycosynthesized silver nanoparticles (AgNPs) against vectors: Aedes aegypti and Anopheles stephensi responsible for diseases of public health importance. The AgNPs synthesized by filamentous fungus Cochliobolus lunatus, characterized by UV–Vis spectrophotometry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The characterization studies confirmed the spherical shape and size (3–21 nm) of silver nanoparticles. The efficacy of mycosynthesized AgNPs at all the tested concentrations (10, 5, 2.5, 1.25, 0.625, and 0.3125 ppm) against second, third, and fourth instar larvae of A. aegypti (LC50 1.29, 1.48, and 1.58; LC90 3.08, 3.33, and 3.41 ppm) and against A. stephensi (LC50 1.17, 1.30, and 1.41; LC90 2.99, 3.13, and 3.29 ppm) were observed, respectively. The mortality rates were positively correlated with the concentration of AgNPs. Significant (P < 0.05) changes in the larval mortality was also recorded between the period of exposure against fourth instar larvae of A. aegypti and A. stephensi. The possible larvicidal activity may be due to penetration of nanoparticles through membrane. Toxicity studies carried out against non-target fish species Poecilia reticulata, the most common organism in the habitats of A. aegypti and A. stephensi showed no toxicity at LC50 and LC90 doses of the AgNPs. This is the first report on mosquito larvicidal activity of mycosynthesized nanoparticles. Thus, the use of fungus C. lunatus to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号