首页 | 本学科首页   官方微博 | 高级检索  
检索        


Study of a novel indolin-2-ketone compound Z24 induced hepatotoxicity by NMR-spectroscopy-based metabonomics of rat urine, blood plasma, and liver extracts
Authors:Wang Quanjun  Jiang Ying  Wu Chunqi  Zhao Jianyu  Yu Shouzhong  Yuan Benli  Yan Xianzhong  Liao Mingyang
Institution:Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China.
Abstract:Antiangiogenic compound has been believed to be an ideal drug in the current cancer biological therapy, but the angiogenesis inhibitors suffer setback for unknown toxicity now. A novel synthetic indolin-s-ketone small molecular compound, 3Z-3-((1)H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one (Z24) can inhibit angiogenesis in new blood vessels. The hepatotoxicity effects of Z24 oral administration (dosed at 60, 130 and 200 mg/kg) have been investigated in female Wistar rats by using metabonomic analysis of (1)H NMR spectra of urine, plasma and liver extracts, as well as by clinical chemistry analysis, liver histopathology and electron micrographs examination. The (1)H NMR spectra of the biofluids were analyzed visually and via pattern recognition by using principal component analysis. The metabonomic trajectory analysis on the time-related hepatotoxicity of Z24 was carried out based on the (1)H NMR spectra of urine samples, which were collected daily predose and postdose over an 8-day period. Urinary excretion of citrate, lactate, 2-oxo-glutarate and succinate increased following Z24 dosing. Increased plasma levels of lactate, TMAO and lipid were observed, with concomitant decrease in the level of glucose and phosphatidylcholine. Metabolic profiling on aqueous soluble extracts of liver tissues with the high dose level of Z24 showed an increase in lactate and glutamine, together with a decrease in glucose, glycogen and choline. On the other hand, studies on lipid soluble extracts of liver tissues with the high dose level of Z24 showed increased level in lipid triglycerides and decreased level in unsaturated fatty acids and phosphatidylcholine. Moreover, the most notable effect of Z24 on the metabolism was the reduction in the urinary levels of creatinine and TMAO and the increase in acetate, citrate, succinate and 2-oxo-glutamate with time dependence. The results indicate that in rats Z24 inhibits mitochondrial function through altering the energy and lipid metabolism, which results in the accumulation of free fatty acids and lactate because of the lack of aerobic respiration. These data show that the metabonomic approach represents a promising new technology for the toxicological mechanism study.
Keywords:1H NMR  1H nuclear magnetic resonance  RH  relative humidity  ALT  alanine aminotransferase  AST  aspartate aminotransferase  BUN  urea nitrogen  CK  creatinine kinase  ALP  alkaline phosphatase  Crn  creatinine  Tbil  total bilirubin  Alb  albumin  Glu  blood glucose  TSP  2  2′  3  3′  -deuterotrimethylsilylproprionic acid  FIDs  free induction decays  FT  Fourier transformation  PCA  principal components analysis  PC  principal components  TI  one vector for components 1  CPMG  Carr-Purcell-Meiboom-Gill  p  d    postdose  TCA  citric acid cycle  Gln  glutamine  Glu  glutamate  GSH  glutathione  DMA  dimethylamine  TMAO  trimethylamine-N-oxide  Cr  creatine  pCHo  phosphatidylcholine  2-OG  2-oxo-glutarate  DMG  dimethylglycine  Glc  glucose  Cho  choline
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号