首页 | 本学科首页   官方微博 | 高级检索  
     

基于多通道经验模式分解的脑机接口特征提取
摘    要:针对脑机接口(BCI)系统中的多通道非平稳脑电(EEG)信号和脑磁(MEG)信号,本文提出一种基于多通道经验模式分解(MEMD)与功率特征结合的信号特征提取算法。首先将多通道脑信号经MEMD算法分解为一系列多尺度多元固有模态函数(IMF)近似平稳分量,然后对每个IMF分量提取功率特征,并利用主成分分析(PCA)降维处理,最后使用线性判别分析分类器对信号特征分类。实验采用第三次和第四次国际BCI竞赛的数据进行验证,对皮层EEG信号和MEG信号运动想象任务的识别正确率分别达到92.0%和46.2%,均位于竞赛第一名水平。实验结果表明本文所提方法有较好有效性和稳定性,为脑信号特征提取提供了新思路。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号