首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mitochondrially targeted nitro-linoleate: a new tool for the study of cardioprotection
Authors:Sergiy M Nadtochiy  Jerry Madukwe  Fred K Hagen  Paul S Brookes
Institution:1.Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA;2.Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA;3.Proteomics Center, University of Rochester Medical Center, Rochester, NY, USA
Abstract:

Background and Purpose

Cardiac ischaemia–reperfusion (IR) injury remains a significant clinical problem with limited treatment options available. We previously showed that cardioprotection against IR injury by nitro-fatty acids, such as nitro-linoleate (LNO2), involves covalent modification of mitochondrial adenine nucleotide translocase 1 (ANT1). Thus, it was hypothesized that conjugation of LNO2 to the mitochondriotropic triphenylphosphonium (TPP+) moiety would enhance its protective properties.

Experimental Approach

TPP+-LNO2 was synthesized from aminopropyl-TPP+ and LNO2, and characterized by direct infusion MS/MS. Its effects were assayed in primary cultures of cardiomyocytes from adult C57BL/6 mice and in mitochondria from these cells, exposed to simulated IR (SIR) conditions (oxygen and metabolite deprivation for 1h followed by normal conditions for 1h) by measuring viability by LDH release and exclusion of Trypan blue. Nitro-alkylated mitochondrial proteins were also measured by Western blots, using antibodies to TPP+.

Key Results

TPP+-LNO2 protected cardiomyocytes from SIR injury more potently than the parent compound LNO2. In addition, TPP+-LNO2 modified mitochondrial proteins, including ANT1, in a manner sensitive to the mitochondrial uncoupler carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and the ANT1 inhibitor carboxyatractyloside. Similar protein nitro-alkylation was obtained in cells and in isolated mitochondria, indicating the cell membrane was not a significant barrier to TPP+-LNO2.

Conclusions and Implications

Together, these results emphasize the importance of ANT1 as a target for the protective effects of LNO2, and suggest that TPP+-conjugated electrophilic lipid compounds may yield novel tools for the investigation of cardioprotection.

Linked Articles

This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8
Keywords:TPP+-LNO2  cardiomyocyte  ischaemia  mitochondria  nitroalkene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号