首页 | 本学科首页   官方微博 | 高级检索  
     


Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability
Authors:Mu Yang  rew M. Clarke   Jacqueline N. Crawley
Affiliation:Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH Building 35, Room 1C-909, Mail Code 3730, Bethesda, MD 20892-3730, USA
Abstract:The BTBR T+tf/J (BTBR) strain is an inbred strain of mice that displays prominent social deficits and repetitive behaviors analogous to the defining symptoms of autism, along with complete congenital agenesis of the corpus callosum (CC). The BTBR strain is genetically distant from the widely used C57BL/6J (B6) strain, which exhibits high levels of sociability, a low level of repetitive behaviors, and an intact CC. Emerging evidence implicates compromised interhemispherical connectivity in some cases of autism. We investigated the hypothesis that the disconnection of CC fiber tracts contributes to behavioral traits in mice that are relevant to the behavioral symptoms of autism. Surgical lesion of the CC in B6 mice at postnatal day 7 had no effect on juvenile play and adult social approaches, and did not elevate repetitive self-grooming. In addition, LP/J, the strain that is genetically closest to the BTBR strain but has an intact CC, displayed juvenile play deficits and repetitive self-grooming similar to those seen in BTBR mice. These corroborative results offer evidence against the hypothesis that the CC disconnection is a primary cause of low sociability and a high level of repetitive behaviors in inbred mice. Our findings indicate that genes mediating other aspects of neurodevelopment, including those whose mutations underlie more subtle disruptions in white matter pathways and connectivity, are more likely to contribute to the aberrant behavioral phenotypes in the BTBR mouse model of autism.
Keywords:autism    agenesis of the corpus callosum    BTBR T+tf/J mice    mouse models of autism    repetitive self-grooming    social interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号