首页 | 本学科首页   官方微博 | 高级检索  
检索        


High-density lipoprotein increases the abundance of eNOS protein in human vascular endothelial cells by increasing its half-life
Authors:Rämet Maria E  Rämet Mika  Lu Qing  Nickerson Moriah  Savolainen Markku J  Malzone Amy  Karas Richard H
Institution:Molecular Cardiology Research Institute and Department of Medicine, New England Medical Center Hospitals, Inc., Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
Abstract:OBJECTIVES: Given the importance of endothelial nitric oxide synthase (eNOS) in regulating endothelium-dependent vasorelaxation, we investigated the effects of high-density lipoprotein in (HDL) on eNOS protein abundance in cultured human vascular endothelial cells. BACKGROUND: Endothelial dysfunction, characterized by decreased nitric oxide production, is one of the early features in the development of atherosclerosis. We have recently shown in vivo that niacin therapy increases plasma HDL concentration and improves endothelium-dependent vasorelaxation in patients with coronary artery disease. METHODS: Human vascular endothelial cells were cultured in the presence or absence of HDL or apolipoprotein (apo)A-I. The eNOS protein abundance was assessed by immunoblotting, and protein half-life was assessed by pulse-chase techniques. The eNOS messenger ribonucleic acid (mRNA) abundance was measured using real-time quantitative polymerase chain reaction. RESULTS: High density lipoprotein, or apoA-I alone, increased eNOS protein abundance by 3.5 +/- 0.7 and 2.7 +/- 0.5-fold, respectively (p < 0.05 for both). However, neither HDL nor apoA-I increased eNOS mRNA abundance. It was shown that HDL increased eNOS protein half-life up to 3.3 +/- 0.2-fold (p = 0.001). Both HDL and apoA-I activated mitogen-activated protein-kinase and phosphatidylinositol 3-kinase (PI3K) Akt-pathways in human arterial endothelial cells, and inhibition of either of these pathways by specific pharmacologic inhibitors abolished the effect of HDL on eNOS. CONCLUSIONS: We demonstrate that HDL activates both extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, resulting in enhanced eNOS protein stability and subsequent accumulation of eNOS protein. This posttranslational regulation represents a previously unrecognized mechanism for regulating eNOS.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号