Intragranular targeting of syncollin, but not a syncollinGFP chimera, inhibits regulated insulin exocytosis in pancreatic beta-cells |
| |
Authors: | Hays L B Wicksteed B Wang Y McCuaig J F Philipson L H Edwardson J M Rhodes C J |
| |
Affiliation: | Pacific Northwest Research Institute, 720 Broadway, Seattle, Washington 98122, USA. |
| |
Abstract: | Several proteins play a role in the mechanism of insulin exocytosis. However, these 'exocytotic proteins' have yet to account for the regulated aspect of insulin exocytosis, and other factors are involved. In pancreatic exocrine cells, the intralumenal zymogen granule protein, syncollin, is required for efficient regulated exocytosis, but it is not known whether intragranular peptides similarly influence regulated insulin exocytosis. Here, this issue has been addressed using expression of syncollin and a syncollin-green fluorescent protein (syncollinGFP) chimera in rat islet beta-cells as experimental tools. Syncollin is not normally expressed in beta-cells but adenoviral-mediated expression of both syncollin and syncollinGFP indicated that these were specifically targeted to the lumen of beta-granules. Syncollin expression in isolated rat islets had no effect on basal insulin secretion but significantly inhibited regulated insulin secretion stimulated by glucose (16.7 mM), glucagon-like peptide-1 (GLP-1) (10 nM) and glyburide (5 microM). Consistent with specific localization of syncollin to beta-granules, constitutive secretion was unchanged by syncollin expression in rat islets. Syncollin-mediated inhibition of insulin secretion was not due to inadequate insulin production. Moreover, secretagogue-induced increases in cytosolic intracellular Ca2+, which is a prerequisite for triggering insulin exocytosis, were unaffected in syncollin-expressing islets. Therefore, syncollin was most likely acting downstream of secondary signals at the level of insulin exocytosis. Thus, syncollin expression in beta-cells has highlighted the importance of intralumenal beta-granule peptide factors playing a role in the control of insulin exocytosis. In contrast to syncollin, syncollinGFP had no effect on insulin secretion, underlining its usefulness as a 'fluorescent tag' to track beta-granule transport and exocytosis in real time. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|