首页 | 本学科首页   官方微博 | 高级检索  
     


Discharge patterns evoked by depolarizing current injection in basal optic nucleus neurons of the pigeon
Authors:Tang Zong-Xiang  Wang Shu-Rong
Affiliation:Laboratory for Visual Information Processing, Center of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.
Abstract:The nucleus of the basal optic root of the accessory optic system in birds is involved in optokinetic nystagmus, which stabilizes images on the retina by compensatory movements of the eyes. The present paper studies the physiological and morphological properties of basal optic neurons in the pigeon by using a brain slice preparation and intracellular recordings. Sixty-one cells examined could be categorized into six types based on their firing patterns in response to depolarizing current injection. Type I cells (54%) fire spontaneously and more spikes as current intensity is increased. Type II cells (15%) discharge regular spikes with similar interspike intervals. Type III cells (5%) show an early burst followed by tonic firing. Type IV cells (5%) fire regular bursts with similar interburst intervals. Type V cells (16%) fire a few spikes in a cluster only at onset of current application. Type VI cells (5%) produce a hump-like depolarization or a single spike depending on current intensities. Seventeen cells stained with Lucifer yellow have multipolar or piriform perikarya (15-28 microm) with two to eight primary dendrites. In some cases, an axon is observed to originate from the cell body, traveling dorsolaterally or dorsally. The physiological significance of these findings is discussed.
Keywords:Accessory optic system   Brain slice   Depolarization   Fluorescent dye   Intracellular recording   Morphology
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号