首页 | 本学科首页   官方微博 | 高级检索  
检索        


Multiple actions of anandamide on neonatal rat cultured sensory neurones
Authors:Evans Rhian M  Scott Roderick H  Ross Ruth A
Institution:Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland.
Abstract:1. We have investigated the effects of the endocannabinoid anandamide (AEA) on neuronal excitability and vanilloid TRPV1 receptors in neonatal rat cultured dorsal root ganglion neurones. 2. Using whole-cell patch-clamp electrophysiology, we found that AEA inhibits high-voltage-activated Ca(2+) currents by 33+/-9% (five out of eight neurones) in the absence of the CB(1) receptor antagonist SR141716A (100 nM) and by 32+/-6% (seven out of 10 neurones) in the presence of SR141716A. 3. Fura-2 fluorescence Ca(2+) imaging revealed that AEA produced distinct effects on Ca(2+) transients produced by depolarisation evoked by 30 mM KCl. In a population of neurones of larger somal area (372+/-20 microM(2)), it significantly enhanced Ca(2+) transients (80.26+/-13.12% at 1 microM), an effect that persists after pertussis toxin pretreatment. In a population of neurones of smaller somal area (279+/-18 microM(2)), AEA significantly inhibits Ca(2+) transients (30.75+/-3.54% at 1 microM), an effect that is abolished by PTX pretreatment. 4. Extracellular application of 100 nM AEA failed to evoke TRPV1 receptor inward currents in seven out of eight neurones that responded to capsaicin (1 microM), with a mean inward current of -0.94+/-0.21 nA. In contrast, intracellular application of 100 nM AEA elicited robust inward currents in approximately 62% of neurones, the mean population response was -0.85+/-0.21 nA. When AEA was applied to the intracellular environment with capsazepine (1 microM), the mean population inward current was -0.01+/-0.01 nA. Under control conditions, mean population current fluctuations of -0.09+/-0.05 nA were observed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号