首页 | 本学科首页   官方微博 | 高级检索  
     


The Effect of Granulocyte-colony Stimulating Factor on Rotator Cuff Healing After Injury and Repair
Authors:David Ross  Tristan Maerz  Michael Kurdziel  Joel Hein  Shashin Doshi  Asheesh Bedi  Kyle Anderson  Kevin Baker
Affiliation:.Department of Orthopaedic Surgery, Beaumont Health System, Royal Oak, MI USA ;.Orthopaedic Research Laboratories, Beaumont Health System, 3811 W 13 Mile Road, Royal Oak, MI 48073 USA ;.Department of Diagnostic Radiology, Beaumont Health System, Royal Oak, MI USA ;.Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI USA
Abstract:

Background

The failure rate of tendon-bone healing after repair of rotator cuff tears remains high. A variety of biologic- and cell-based therapies aimed at improving rotator cuff healing have been investigated, and stem cell-based techniques have become increasingly more common. However, most studies have focused on the implantation of exogenous cells, which introduces higher risk and cost. We aimed to improve rotator cuff healing by inducing endogenous stem cell mobilization with systemic administration of granulocyte-colony stimulating factor (G-CSF).

Questions/purposes

We asked: (1) Does G-CSF administration increase local cellularity after acute rotator cuff repair? (2) Is there histologic evidence that G-CSF improved organization at the healing enthesis? (3) Does G-CSF administration improve biomechanical properties of the healing supraspinatus tendon-bone complex? (4) Are there micro-MRI-based observations indicating G-CSF-augmented tendon-bone healing?

Methods

After creation of full-thickness supraspinatus tendon defects with immediate repair, 52 rats were randomized to control or G-CSF-treated groups. G-CSF was administered for 5 days after repair and rats were euthanized at 12 or 19 postoperative days. Shoulders were subjected to micro-MR imaging, stress relaxation, and load-to-failure as well as blinded histologic and histomorphometric analyses.

Results

G-CSF-treated animals had significantly higher cellularity composite scores at 12 and 19 days compared with both control (12 days: 7.40 ± 1.14 [confidence interval {CI}, 5.98–8.81] versus 4.50 ± 0.57 [CI, 3.58–5.41], p = 0.038; 19 days: 8.00 ± 1.00 [CI, 6.75–9.24] versus 5.40 ± 0.89 [CI, 4.28–6.51], p = 0.023) and normal animals (12 days: p = 0.029; 19 days: p = 0.019). There was no significant difference between G-CSF-treated animals or control animals in ultimate stress (MPa) and strain, modulus (MPa), or yield stress (MPa) and strain at either 12 days (p = 1.000, p = 0.104, p = 1.000, p = 0.909, and p = 0.483, respectively) or 19 days (p = 0.999, p = 0.964, p = 1.000, p = 0.988, and p = 0.904, respectively). There was no difference in MRI score between G-CSF and control animals at either 12 days (2.7 ± 1.8 [CI, 1.08–4.24] versus 2.3 ± 1.8 [CI, 0.49–4.17], p = 0.623) or 19 days (2.5 ± 1.4 [CI, 1.05–3.94] versus 2.3 ± 1.5 [CI, 0.75–3.91], p = 0.737). G-CSF-treated animals exhibited significantly lower relative bone volume compared with normal animals in the entire humeral head (24.89 ± 3.80 [CI, 20.17–29.60) versus 32.50 ± 2.38 [CI, 29.99–35.01], p = 0.009) and at the supraspinatus insertion (25.67 ± 5.33 [CI, 19.04–32.29] versus 33.36 ± 1.69 [CI, 31.58–35.14], p = 0.027) at 12 days. Further analysis did not reveal any additional significant relationships with respect to regional bone volume or trabecular thickness between groups and time points (p > 0.05).

Clinical Relevance

Postoperative stem cell mobilization agents may be an effective way to enhance rotator cuff repair. Future studies regarding the kinetics of mobilization, the homing capacity of mobilized cells to injured tissues, and the ability of homing cells to participate in regenerative pathways are necessary.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号