首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants
Authors:Barrère F  van der Valk C M  Dalmeijer R A J  van Blitterswijk C A  de Groot K  Layrolle P
Affiliation:BMTI, University of Twente, Prof. Bronkhorstlaan 10, P.O. Box 98, 3720 AB Bilthoven, The Netherlands.
Abstract:Calcium phosphate (Ca-P) coatings have been applied onto titanium alloys prosthesis to combine the srength of metals with the bioactivity of Ca-P. It has been clearly shown in many publications that Ca-P coating accelerates bone formation around the implant. However, longevity of the Ca-P coating for an optimal bone apposition onto the prosthesis remains controversial. Biomimetic bone-like carbonate apatite (BCA) and Octacalcium Phosphate (OCP) coatings were deposited on Ti6Al4V samples to evaluate their in vitro and in vivo dissolution properties. The coated plates were soaked in alpha-MEM for 1, 2, and 4 weeks, and they were analyzed by Back Scattering Electron Microscopy (BSEM) and by Fourier Transform Infra Red spectroscopy (FTIR). Identical coated plates were implanted subcutaneously in Wistar rats for similar periods. BSEM, FTIR, and histomorphometry were performed on the explants. In vitro and in vivo, a carbonate apatite (CA) formed onto OCP and BCA coatings via a dissolution-precipitation process. In vitro, both coatings dissolved overtime, whereas in vivo BCA calcified and OCP partially dissolved after 1 week. Thereafter, OCP remained stable. This different in vivo behavior can be attributed to (1) different organic compounds that might prevent or enhance Ca-P dissolution, (2) a greater reactivity of OCP due to its large open structure, or (3) different thermodynamic stability between OCP and BCA phases. These structural and compositional differences promote either the progressive loss or calcification of the Ca-P coating and might lead to different osseointegration of coated implants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号