首页 | 本学科首页   官方微博 | 高级检索  
检索        


Characterization of mRNA responsible for induction of functional sodium channels in Xenopus oocytes
Authors:Chikara Hirono  Shunichi Yamagishi  Ruri Ohara  Yoshie Hisanaga  Takashi Nakayama  Hiroyuki Sugiyama  
Abstract:When Xenopus laevis oocytes were microinjected with poly(A)+ mRNA isolated from adult rat brains or electric organs of Electrophorus electricus, the oocytes developed functional sodium channels. Upon application of veratrine, the microinjected oocytes exhibited transient depolarization, resulting in spontaneous repetitive spikes in some occasions, and action potentials. These responses were mediated mainly by external Na ions, prolonged by scorpion toxin, completely blocked by tetrodotoxin, and suppressed by local anesthetics. Thus the mRNA-induced sodium channels exhibited essentially all the functional properties expected for native sodium channels in nerve and muscle membranes. Rat brain mRNA was fractionated into 4 fractions by sucrose gradient centrifugation. Each fraction and various combinations of them were examined for the efficiency in inducing functional sodium channels in Xenopus oocytes. A fraction corresponding to mRNA of approximately 30S to 46S was found to contain all mRNA necessary for the expression of the channels, indicating that mRNA of smaller sizes expected to code for smaller polypeptides may not be required.
Keywords:sodium channel  mRNA  microinjection  Xenopus oocyte  veratridine  scorpion toxin  rat brain  Electrophorus
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号