首页 | 本学科首页   官方微博 | 高级检索  
     


5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na(+) channels.
Authors:L M Cardenas  C G Cardenas  R S Scroggs
Affiliation:Department of Anatomy and Neurobiology, Health Science Center, University of Tennessee, Memphis, Tennessee 38163, USA.
Abstract:The physiological effects of 5HT receptor coupling to TTX-resistant Na(+) current, and the signaling pathway involved, was studied in a nociceptor-like subpopulation of rat dorsal root ganglion (DRG) cells (type 2), which can be identified by expression of a low-threshold, slowly inactivating A-current. The 5HT-mediated increase in TTX-resistant Na(+) current in type 2 DRG cells was mimicked and occluded by 10 microM forskolin. Superfusion of type 2 DRG cells on the outside with 1 mM 8-bromo-cAMP or chlorophenylthio-cAMP (CPT-cAMP) increased the Na(+) current, but less than 5HT itself. However, perfusion of the cells inside with 2 mM CPT-cAMP strongly increased the amplitude of control Na(+) currents and completely occluded the effect of 5HT. Thus it appears that the signaling pathway includes cAMP. The phosphodiesterase inhibitor 3-isobutyl-L-methylxanthine (200 microM) also mimicked the effect of 5HT on Na(+) current, suggesting tonic adenylyl cyclase activity. 5HT reduced the amount of current required to evoke action potentials in type 2 DRG cells, suggesting that 5HT may lower the threshold for activation of nociceptor peripheral receptors. The above data suggest that serotonergic modulation of TTX-resistant Na(+) channels through a cAMP-dependent signaling pathway in nociceptors may participate in the generation of hyperalgesia.
Keywords:
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号