首页 | 本学科首页   官方微博 | 高级检索  
     


Increasing Power Versus Duration for Radiofrequency Ablation with a High Superfusate Flow:
Authors:Guy Duncan J R  Boyd Anita  Thomas Stuart P  Ross David L
Affiliation:Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia. duncang@westgate.wh.usyd.edu.au
Abstract:Radiofrequency (RF) ablation of pulmonary veins (PVs) is a new treatment for atrial fibrillation. Low energy ablation is usually used for this procedure. The effect of superfusate flow on lesion formation in this setting has not been studied previously. We examined lesion dimensions and intramural temperatures with varying powers and duration of RF application in this high flow environment. Ablation of fresh bovine hearts was performed with a 4-mm tip RF catheter in temperature control mode, target temperature 50 degrees C. At power levels of 20 W, 30 W, 40 W, and 50 W, effects of PV flow (no flow or 1 L/min) and 60- and 120-second durations were tested. Tissue temperatures were recorded at depths of 1, 4, 7, and 10 mm. Without flow, no lesions were created. The lowest power setting for lesion creation was 30 W at 60 seconds and 20 W at 120 seconds. Increasing power from 30 W to 50 W for 60 seconds increased lesion depth 0.7 mm (SE 0.3), P = 0.03 and 2.5 mm (SE 0.6), P = 0.003, at 120 seconds. Increasing RF application duration from 60 to 120 seconds increased depth for 30 W by 0.9 mm (SE 0.5), P = NS, 40 W 1.7 mm (SE 0.4), P = 0.002, and 50 W 2.6 mm (SE 0.5), P < 0.001. Power of 50 W for 60 seconds and >30 W for 120 seconds created lesions deeper than the wall thickness of a PV. Flow is necessary for creation of lesions with low power, low tip temperature RF ablation. When a resistant site to ablation is encountered, increasing duration of ablation is best for increasing lesion depth. Higher power has the potential to create lesions deeper than the PV wall and may increase the risk of complications.
Keywords:catheter ablation    electrophysiology    arrhythmia
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号