首页 | 本学科首页   官方微博 | 高级检索  
     


Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III
Authors:Dudkina Natalia V  Eubel Holger  Keegstra Wilko  Boekema Egbert J  Braun Hans-Peter
Affiliation:Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Abstract:Mitochondria are central to the efficient provision of energy for eukaryotic cells. The oxidative-phosphorylation system of mitochondria consists of a series of five major membrane complexes: NADH-ubiquinone oxidoreductase (commonly known as complex I), succinate-ubiquinone oxidoreductase (complex II), ubiquinol-cytochrome c oxidoreductase (cytochrome bc1 complex or complex III), cytochrome c-O2 oxidoreductase (complex IV), and F1F0-ATP synthase (complex V). Several lines of evidence have recently suggested that complexes I and III-V might interact to form supercomplexes. However, because of their fragility, the structures of these supercomplexes are still unknown. A stable supercomplex consisting of complex I and dimeric complex III was purified from plant mitochondria. Structural characterization by single-particle EM indicates a specific type of interaction between monomeric complex I and dimeric complex III in a 1:1 ratio. We present a model for how complexes I and III are spatially organized within the I+III2 supercomplex.
Keywords:Arabidopsis   oxidative phosphorylation   respiratory protein complexes   single-particle analysis   plant mitochondria
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号