首页 | 本学科首页   官方微博 | 高级检索  
检索        


Differential synaptic effects on physiological flexor hindlimb motoneurons from cutaneous nerve inputs in spinal cat.
Authors:J C Leahy  R G Durkovic
Institution:Department of Physiology, State University of New York Health Science Center, Syracuse 13210.
Abstract:1. We previously demonstrated in the spinal cat that superficial peroneal cutaneous nerve stimulation produced strong reflex contraction in tibialis anterior (TA) and semitendinosus (St) muscles but unexpectedly produced mixed effects in another physiological flexor muscle, extensor digitorum longus (EDL). The goal of the present study was to further characterize the organization of ipsilateral cutaneous reflexes by examining the postsynaptic potentials (PSPs) produced in St, TA, and EDL motoneurons by superficial peroneal and saphenous nerve stimulation in decerebrate, spinal cats. 2. In TA and St motoneurons, low-intensity cutaneous nerve stimulation that activated only large (A alpha) fibers i.e., approximately 2-3 times threshold (T)], typically produced biphasic PSPs consisting of an initial excitatory phase and subsequent inhibitory phase (EPSP, IPSP). Increasing the stimulus intensity to activate both large (A alpha) and small (A delta) myelinated cutaneous fibers supramaximally (15-45 T) tended to enhance later excitatory components in TA and St motoneurons. 3. In EDL motoneurons, 2-3 T stimulation of the superficial peroneal nerve evoked initial inhibition (of variable magnitude) in 7/10 EDL motoneurons tested, with either excitation (n = 2) or mixed effects (n = 1) observed in the remaining EDL motoneurons. Saphenous nerve stimuli produced excitation either alone, or preceded by an inhibitory phase in EDL. Increasing the stimulus intensity enhanced later inhibitory influences from superficial peroneal and excitatory influences both from superficial peroneal and saphenous nerve inputs in EDL motoneurons. 4. Short-latency (less than 1.8 ms) EPSPs were observed in a few motoneurons in all reflex pathways examined, except for EPSPs in EDL motoneurons evoked by saphenous stimulation. IPSPs with central latencies less than 1.8 ms were also produced by both saphenous (TA, n = 1; EDL, n = 2) and superficial peroneal (EDL, n = 4) nerve stimulation. 5. The results, in comparison with other reports employing spinal and nonspinal preparations, suggest that removal of influences from higher centers reveals inhibitory circuits from the superficial peroneal and saphenous nerves to EDL motoneurons in the spinal preparation. The inhibitory inputs observed are thought to reflect the activation of "specialized" reflex pathways. Additionally, the demonstration of short-latency EPSPs and IPSPs suggest that the minimal linkage in both the excitatory and inhibitory cutaneous reflex pathways examined is disynaptic. The results are discussed in relation to previous studies on classically conditioned flexion reflex facilitation in spinal cat.
Keywords:
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号