首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of alpha-linolenic acid vs. docosahexaenoic acid supply on the distribution of fatty acids among the rat cardiac subcellular membranes after a short- or long-term dietary exposure
Authors:Amandine Brochot  Marine Guinot  Daniel Auchere  Jean-Paul Macaire  Pierre Weill  Alain Grynberg  Delphine Rousseau-Ralliard
Affiliation:1. Faculté de Pharmacie, Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud 11, Unité Mixte de Recherche 1154, Lipides Membranaires et Régulation Fonctionnelle du Coeur et des Vaisseaux, Institut Fédératif de Recherche 141, F-92296, Chatenay-Malabry, France
2. Société Valorex, Combourtillé, France
Abstract:

Background

Previous work showed that the functional cardiac effect of dietary alpha-linolenic acid (ALA) in rats requires a long feeding period (6 months), although a docosahexaenoic (DHA) acid-supply affects cardiac adrenergic response after 2 months. However, the total cardiac membrane n-3 polyunsaturated fatty acid (PUFA) composition remained unchanged after 2 months. This delay could be due to a specific reorganization of the different subcellular membrane PUFA profiles. This study was designed to investigate the evolution between 2 and 6 months of diet duration of the fatty acid profile in sarcolemmal (SL), mitochondrial (MI), nuclear (NU) and sarcoplasmic reticulum (SR) membrane fractions.

Methods

Male Wistar rats were randomly assigned to 3 dietary groups (n = 10/diet/period), either n-3 PUFA-free diet (CTL), or ALA or DHA-rich diets. After 2 or 6 months, the subcellular cardiac membrane fractions were separated by differential centrifugations and sucrose gradients. Each membrane profile was analysed by gas chromatography (GC) after lipid extraction.

Results

As expected the n-3 PUFA-rich diets incorporated n-3 PUFA instead of n-6 PUFA in all the subcellular fractions, which also exhibited individual specificities. The diet duration increased SFA and decreased PUFA in SL, whereas NU remained constant. The SR and MI enriched in n-3 PUFA exhibited a decreased DHA level with ageing in the DHA and CTL groups. Conversely, the n-3 PUFA level remained unchanged in the ALA group, due to a significant increase in docosapentaenoic acid (DPA). N-3 PUFA rich diets lead to a better PUFA profile in all the fractions and significantly prevent the profile modifications induced by ageing.

Conclusion

With the ALA diet the n-3 PUFA content, particularly in SR and SL kept increasing between 2 and 6 months, which may partly account for the delay to achieve the modification of adrenergic response.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号